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Introduction

The lectures presented here treat three closely related topics on random walks
with self-interactions or with interactions with a wall. In some cases, the
“random walk” is a Brownian motion. All the topics have versions for random
walks and for Brownian motion, but not in all cases both versions have been
proved.

The first topic addressed is the so called polymer measure in three dimen-
sion, also called Edwards’ model. This is a construction of a Brownian motion
with local self-repellence, which is given by a é-function. There are consid-
erable difficulties to define this rigorous for dimensions larger than 1. The
interaction in terms of this §-function is not defined at all. One then tries to
work with a regularized version, for instance smoothing the d-function, and
removes the regularization in a limiting procedure, proving that the limit
measure exist. The first construction in the difficult three-dimensional case
was by Westwater who in two celebrated papers in the early eighties proved
that a suitably regularized version converges if the regularization is taken
away. The two-dimensional case is easier and had been treated earlier by
Varadhan. Westwater’s approach is extremely complicated, and essentially
nobody seems to haven taken the pains to study his papers and his methods.
Not much later, there has been an alternative approach, first in the context
of quantum field theory, by Brydges, Frohlich and Sokal, and a bit later also
for the polymer problem by Bovier, Felder and Frohlich. Their approach is
much simpler, but also had considerable shortcomings. The main one was
that it was impossible to speak of the polymer measure, as the proof gave
only boundedness properties of finite dimensional distributions of (lattice)
regularized versions, from which the existence of convergent subsequences
could be derived. With such a method, it is then difficult to prove important
properties of the measure. In a paper of mine in 1992, most of these short-
comings have been removed, and the convergence of a regularized version has
been proved. The topic was vigorously taken up by X.Y. Zhou who wrote a
number of papers (mostly with Albeverio, and one with me), extending the
approach for instance to arbitrary coupling constants, identifying the mea-
sure with the one constructed by Westwater, and proving limit theorems for
self-repellent discrete random walks converging to the measure. It was an
extremely sad event when Zhou died suddenly in 1996.

The second chapter will deal with self-attracting random walks. The self-
attraction is given, too, in terms of a Gibbsian description, which contrasts
with some models investigated recently in the probability community. The
most natural example would be to change the sign of the coupling constant
in the standard (weakly) self-avoiding case, but it is easy to see that this is
not an interesting object as the attraction would be far too strong. So one is
led to models with weaker interaction, namely where the coupling constant
decays in time. Somewhat surprisingly, this model has a collapse transition in
two and more dimensions, changing from a collapsed state when the coupling
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constant is large, to a diffusive one for weak couplings. The diffusive phase
has been studied by Brydges and Slade. The collapsed state is investigated in
a paper of Uwe Schmock and myself. Collapse transitions are well known in
statistical mechanics in many models with self-attraction, but in most cases,
there is no rigorous proof.

A part of the second chapter will be devoted to problems around the
Wiener sausage, where closely related effects appear. A self-attracting path
measure (starting for instance with the Brownian motion) is obtained by
transforming the measure by favoring paths with small Wiener sausage. It
turns out that the path measure obtained in this way, leads to a kind of
droplet construction, where the droplet describes in which region of the space
the paths have to concentrate under the new measure. This droplet is some-
what trivial, being just a ball, a fact which is related to the standard isoperi-
metric problem. Recently, after previous work in the two-dimensional case by
Sznitman and by myself, Povel has been able to prove in any dimension that
the droplet concentrates in L, near the optimal droplet. The behavior of this
model also depends crucially on the coupling constant chosen. It turns out
that a model with decaying coupling constant is just diffusive if the decay is
too fast. There is a critical case where the “droplet picture” starts to dissolve,
which is quite interesting, and has recently been investigated by M. van den
Berg, F. den Hollander and me. I will present the main ideas on this topic.

The second chapter circles around models which have a localization-
delocalization transition, and this topic is continued in the last chapter which
discusses two models with localization-delocalization phenomena of a some-
what different kind, namely coming from an interaction of a random walk
with a “wall”. The chapter covers a model of a so called hetero- or copoly-
mer with a localization-delocalization phase transition, and furthermore a
so-called wetting transition in dimension one.

Some comments about the degree in which technical details will be given
in these lectures. Some of the proofs presented here would be technically very
lengthy if given in all details. For instance, a full and complete proof of the
construction of the three dimensional polymer measure would still require
considerable space, but in fact, some of the calculations and estimates are
quite repetitive, and it would only be tiring if all of them would be presented.
As a rule, I am trying to present for most of the results some of the very
core arguments in details. I will furthermore essentially concentrate on the
probabilistic aspects, just citing the analytic ones.

Many parts of these lectures can be read independently. In particular,
the first chapter on the three-dimensional polymer measure stands some-
what apart. The other parts are all closely connected with large deviations
(Chapter 1 actually, too, but somewhat hidden).



1. On the construction of the
three-dimensional polymer measure

1.1 Introduction

An outstanding open problem in probability theory is the determination of
the mean end to end distance of a standard self-avoiding random walk on the
d-dimensional lattice Z? for d = 2,3 (and 4).

Given n € N, let £2,, be the set of paths w of length n:

def
2, = {w = (o, w1, ...,wn) : w; €Z, wo

=0, |w; —w;—1] = 1forl < i< n},
and the set of self-avoiding paths
254 déf{weﬁn:wi;éwj for i # j}.

The main problem is to derive precise information about the asymptotic
behavior of [254|, the number of self-avoiding paths, and about the mean
length of self-avoiding paths:

def
(lomllysa = D~ llwnll/1254]

wensA

where || || is the Euclidean length. From arguments in theoretical physics
(conformal field theory, expansion techniques) it is believed that (||wn||)sa
scales with n3/* for d = 2, and with n” with v slightly less than 3/5 for d =
3. Also, the scaling limits, i.e. the asymptotic distribution of wy,/{|jwn||)sa
should be non Gaussian (see [52]). From dimension 4 onwards, the scaling
limits are becoming Gaussian, with a slight correction to ordinary central
limit scaling for d = 4, where (|w,||)s4 is believed to be of order v/n</logn.
The case of d > 5 is completely settled: Starting with work by Brydges and
Spencer [25] who introduced the lace expansion, and culminating with Hara
and Slade [55]. An excellent monograph on these and related topics is [59].
(For a recent conceptually simple approach, see [18]). There is no (published)
proof for d = 4 which is not (directly) tractable by lace expansions (see [22],
[58], [26] for partial results).

I will not give any discussion of these techniques here. One of the results
I discuss is a very weakly interactive case for d = 3, where the interaction
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is so weak that one has ordinary scaling, but where nevertheless the scaling
limit of (wpne/([lwnll))o<i<i, which is shown to exist, is not Gaussian, but
instead given as the so called Edwards’ model first constructed rigorously by
Westwater [76].

We now introduce the so called weakly self-avoiding random walks. Here,
all paths in (2,, receive positive weight, but the ones with many intersections
are “punished”. This is achieved by choosing a parameter A € (0,1). Then
every path w € §2,, gets its relative weight decreased by a factor (1 — A) for
every self intersection, i.e. we define the probability measure on (2,, by

~ def
Pn,)\(w) = O§i1<7j§n(1 - )\lwi:u}j) / Zn,%
def
where Z, \ = o (1-Xy=;) -
’ we, 0<i<ji<n ’

(Remark: Through these notes, we will always use P to denote measures
on path spaces obtained from “simple” random walk measures by introducing
interactions, self-repelling in this chapter, and self-attracting in the next.) We
rewrite the above measure by setting (with a slight abuse of notation)

. /6 n
Pop@)=exp | =0 lu=u,| [ Zng, (1.1)

ij=1

where § = —log(1 — A) € (0,00), and Z,, g being the appropriate norming,.
Remark that the diagonal part in the summation is cancelling. We can also
rewrite the interaction:

i ]-w,:o.zj = Z En($,W)2,

t,j=1 z€Z?
where £,,(z,w) is the discrete local time

ln(z,w) def loj=z-

Jj=0

This is the so called Domb-Joyce model.

The above expression for the Domb-Joyce model naturally leads to the
question if similar models exist starting with the Brownian motion instead of
the random walk and how the relations between this and the discrete models
are.

We start with the Wiener measure Pr on C§(T), the set of continuous
paths w : [0,7] — R? starting at 0, and we want to define the polymer
measure formally by

T T
Pr s(dw) = Ziﬁexp [—g/o dt/o ds 6(w; — ws) | Pr(dw), (1.2)
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where § is the Dirac function. There is evidently some trouble defining this,
as the formal expression

T T
/ ds/ dt 6(wy — wg) = /dw lp(x,w)?%,
0 0

T
lp(z,w) = /0 0(ws — x)ds,

i.e. the Lo-norm of the local time, only makes sense for d = 1. The trouble is
also revealed by formally calculating the expectation under Wiener measure

Er /OT ds /OT dt 6(wy —ws) =2 // dsdt p.—s(0), (1.3)

0<s<t<T

where

where p, () is the transition density of Brownian motion, i.e.

z|2
pu(a) & (2mu) =2

However, the right hand side of (1.3) is evidently divergent for d > 2. There
are a number of ways in which one can try to remedy the situation. The first
idea, but not the easiest one, is to step back to the Domb-Joyce model and
to try to make some limiting procedures with the lattice spacing going to 0,
and an appropriate dependence of 5 on n. This is possible, but is somewhat
delicate, and has only recently been done in a completely satisfactory way
[1] for d = 3. T will discuss that below. Another approach is to replace ¢ by a
smoothed version, e.g. p.,€ > 0, and then let ¢ — 0. For d = 2 this was the
way in which Varadhan proved the existence of the polymer measure (1.2).
The most convenient way however is to use some gap regularization. Observe
that the right hand side of (1.3) is divergent only because of the integration
near the diagonal. If we leave a gap between s,t, e.g. integrating only over
s+¢e <t, e >0, then this stays finite. It is in fact known that

T—¢ T
Jor(w) = / ds/ dt §(wp — wy)
0 s+e

is well defined, Pr - a.s. As this is still only a formal expression, some com-
ments are in order. We can define, for every a > 0,

T—e T
Jor(w) = / ds dt po(wp — ws),
0 s+e

and then (with fixed € > 0) let a — 0. This limit exists e.g. in Lo (see [64]),
and is what we denote by .J§ ;. The limit has nice properties, e.g. it is a.s.
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continuous in €,T. We will not go into a discussion of these properties, but
simply refer to the relevant literature, e.g. [64]. We then define our regularized
Edwards’ model by

Pf. g(dw) = exp(—B.J5 p(w)) Pr(dw)/Z7,.c. (1.4)
Theorem 1.1. ForT,3 > 0, d = 2,3, the limit
S
Pry =l Py
exists as a weak limit of probability measures on C4(T).

We will focus on the case d = 3 which is considerably more delicate than
the case d = 2. The theorem is essentially due to Westwater [76]. The only
difference is that he took a slightly different gap regularization. The procedure
Westwater follows is, however, extremely difficult. We give some comments on
it below. We explain here an approach which is much easier and is based on
so called skeleton inequalities. This method had been introduced by Brydges,
Frohlich and Sokal [23] in Euclidean (% quantum field theory and had then
been adapted to the polymer problem in [19]. From a probabilistic point of
view, the results in [19] have however a number of shortcomings. The most
serious one is that no convergence is proved, but only boundedness properties
which made it possible to prove the existence of convergence subsequences.
There was then no possibility for an identification of the process for instance
with the one constructed by Westwater. The above authors also had used a
lattice regularization, and it was not even clear that there are limits which
are rotational symmetric. Another point is that the results are formulated in
terms of Laplace transforms in time, and the problem how to get polymer
measures with fixed time horizon had not been addressed. For this reason,
the approach was generally thought to be simple but that it would give only
somewhat weak results. However, at least for the polymer case, some of the
shortcomings can be remedied, and a modification proving convergence at
fixed time has been developed in [9]. This is explained below.

In [9], the polymer measure was constructed only for a small coupling
parameter (. This restriction has later been removed in [2], by a simple but
clever argument, which we will include here, too.

First some comments on the approach by Westwater [76]. He uses no
regularization of the J-function but a slightly different gap regularization
than that explained above. Take T' = 1 (for notational simplicity). Then

1/2
/ ds/ dt 6(wy — wy)
1/2

is Pi-a.s. well defined (in the sense described above). On the next level, one
defines



1.1 Introduction 11

1/4 1/2
Xi1(w / ds/ dt 6(wy — ws),
1

3/4
X172( )—/ dS dt 5( Ws —O.)t),
1/2 3/4

and then of course

(2i—1)2—n~1 27"
Xni(w) = /( ds/( dt 0(ws — wy),

i—1)2-n 2i—1)2-n-1

n > 1,1 <14 < 2™ These variables have a number of simple properties. For
fixed n, the 2" variables X, ; are evidently independent. Furthermore, the law
of X, ; by simple Brownian rescaling is the same as that of Xn_u/\/ﬁ, n >
2 for d = 3. The main difficulty is that for different n, the X, ; are not
independent. Westwater proves that there is a near independence between
Xn,i and X, ; if [m — n| is large. In other words, there is near independence
between short and long range self intersections. Westwater then proves, using
this property, that ngn I:’lN ,éWW exists where
o L

N 2"

Pﬁéww(dw = exp ﬂZZX n.j(W) Pl(dw)/Zév.
n=0j=1

The picture below (Fig. 1.1) shows the domain of integration for N = 2.
The main disadvantage of the Westwater approach is that it is extremely
complicated which is mainly due to the fact that it makes bad use of the fact
that X,,; > 0. A further enormous complication arises because the X, ; do
not have exponential moments. It has recently been proved by Albeverio and
Zhou [2] that the Westwater process coincides with the one of Theorem 1.1.
This might look obvious, but in fact, the removal of the gap is quite subtle
as will become apparent.

One of the motives to investigate the continuous polymer measures had
certainly been the hope that they shed some light on the discrete model.
The relation is however quite delicate. To see what the appropriate scaling
should be, we will perform some formal calculations. We consider the polymer
measure on a time slot [0,7] with a coupling parameter 8y > 0 which may
depend on T'. Formally

T T
dPr s, = exp [m / ds / dt §(wy — ws) | Pr(dw)/Z.
0 s

Performing Brownian scaling
Oy = wer VT, t <1,

and using
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t

Fig. 1.1.

T T L 1
/ ds/ dt §(wy — wg) = T275/ ds/ dt 6(0s — @)
0 s 0 s

we see that for Br = BT%_2, the distribution of the rescaled path under
PT,[;T is just ]5175. (This is of course not a rigorous proof, but the statement
is correct). Anyway, this suggests that starting with a standard random walk
(wo = 0,wy,...,wr) on Z% and the weakly self-avoiding walk

_ 1
Pro@) =g—ep |6 3 lu-,

’ 0<i<j<T
one has

Theorem 1.2. Assume d < 3 and 3 > 0. Then

. 7 —1 A
TIEI;O PT,ET—2+"/2YT = Plﬁ

where Yr : Qp — C4(1) is defined by Yr(w)(i/T) = wi/VT, and linearly
interpolated between.
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The above Theorem is easy for d = 1, has been proved by Stoll [69] for
d =2, and in [1] for d = 3. It is of course far from the “real” question, namely
what happens with Pr s for fixed 3 as T — oo. On the other hand, even in
the above “very weakly” self-avoiding case, the limiting measure for d = 3
is singular with respect to any Wiener measure, and is non-Gaussian, as has
been proved by Westwater. Remark that in the two dimensional case, the
T-dependence of By is fr = B/T. This will be important in Chapter II.

There are considerable technical difficulties to prove Theorem 1.2 for d =
3. The main problem is to show that the short range intersections, where
the random walk does not quite look like a Brownian motion, do not disturb
the limiting picture. We will not give a detailed proof here. It is essentially a
modification of the arguments in the proof of Theorem 1.1 but requires some
additional nontrivial arguments.

It is to be expected that the limiting behavior of the weakly self-avoiding
model (i.e. PT”(; for fixed B8, T — o0) is by the above rescaling related to the
8 — oo behavior of the polymer measure ]51,3. There is no proof of this for
d > 2. Even the d = 1 case is very far from trivial, and has only recently
been solved by van der Hofstad and den Hollander [57].

We give an outline of the rest of this chapter. We entirely focus on d = 3
which is the most delicate case. In Section 1.2 we discuss the boundedness
properties of the so called two point functions. This follows closely the ap-
proach in [23] and [19], but there are some differences. First, we avoid using
Laplace transforms in time. Proving things in Laplace transformed versions
is technically simpler but then one has the trouble to invert the result. This
inversion is not done in the above mentioned papers of Brydges, Frohlich,
Sokal and Bovier, Felder and Frohlich. We also derive relatively sharp point-
wise estimates (in contrast to L,-estimates).

I believe that in the long run, methods for fixed time and directly in z-
space give sharper results and are more transparent than when using various
transforms which have to be inverted. Another example of this is a recent
direct approach to weakly self-avoiding walks for d > 5 [18], which is concep-
tually much simpler than older ones and yields somewhat sharper results.

I will present some details of the proof of Theorem 1.1, but not all. First, I
take some continuity properties of intersection local times for granted. These
are modifications of classical results proved by Rosen. For details I refer to
the Appendix of [9]. The basic inequalities are explained in details but the
calculations are somewhat repetitive and I will not give all of them.

The boundedness properties immediately imply the tightness of the mea-
sures, as € — 0. With the inequalities derived in 1.2, it is however not possible
to prove convergence. In Section 1.3, we derive some alternative inequalities
which are more delicate to handle, but with which it is possible to prove
convergence.

The approach in [19] and [9] had originally been purely perturbative, but
by an observation of [2], this can be extended to arbitrary 5 > 0.
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1.2 The skeleton inequalities and boundedness
properties

Let e >0,0<t<t+e<T < o0, and set
def T—e¢ T
e
ET(w) = / dsl/ dsy 0(ws, — ws,)
t 81+¢
which can be defined as the a.s. limit
T—e¢ T
lim dsl/ dsg po(ws; — Wsy)-
al0 Jy s1+€

For T'—t < ¢, we put Ji;(w) = 0. The existence of this limit can be proved
by Fourier techniques (see [64]). We will below perform some formal manipu-
lations with d-functions, which all can easily been justified (for a fixed e-gap)
by replacing d by p, and letting a — 0. All the serious trouble is coming
when discussing the ¢ — 0 limit, and we will focus on that.

We consider the so called two point functions g7 5(x) defined to be the
density of the measure

Er (exp(—0J5 7); wr € dx)
on R?. It is convenient to write this formally as
97.5(2) = Er (exp(=BJ5 1) (wr — 2)) .

We write g because these quantities have to be slightly modified later on, and
we will switch then to g.
Evidently, we have for 0 <¢ < T

pe* G715 = Ep (exp(=BJ; p)d6(wp — ) .

Setting ¢t = 0 gives gy and t = T gives pp. By the fundamental theorem of
calculus, we therefore arrive at

pr(@) ~Trs(@) = [ G oG 05)(@)

T
= / dt Er (—ﬁ <(§ltJtET> exp(—BJ;7)d(wr — x)) .
0

Now, %Jf’T(w) =— fj_e ds 0(ws —wy), if t <T —e, and 0 otherwise, and we

therefore get

T—e T
pe(z) — T p() = B /O it [ s (3 — ) exp(= )3 )

(1.5)
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The manipulation may look somewhat cavalier, in particular as the inter-
section local times are not differentiable in the time limits, but they are
easily justified. We will derive some concrete inequalities involving g. These
inequalities are the only objects we are interested in. These inequalities do
make sense also when ¢ is replaced by p, in which case all the manipula-
tions are easily justified, and we can take the a — 0 limit in the end. We
will however stick to the § notation which is evidently more convenient. We
will often drop ¢, in the notations but they should be remembered to be
present. On the right hand side of (1.5), we can split the interaction on [¢, T
into the self-interactions on [t, s] and [s, T| and the interactions between these
intervals:

JET = Jts,s + JSE,T + Jts,s;s,T’ (16)

where

g5 = // ds1dss §(ws, — ws,)- (1.7)

t<s1<s<sg<T
So—81>€
In (1.5), there is no interaction inside the interval [0, ¢], and also none between
this interval and the next. However, there is an interaction left between [t, s]
and [s,T], which is given by the third summand on the right hand side of
(1.6). Without this interaction, the right hand side of (1.5) would just be

/0 T / j ds [ dypilw)g, O @) (1.8)

(We have dropped 3, ¢ in g for notational convenience.)
It is convenient to introduce a diagram notation for this and more com-
plicated expressions. The so-called free propagator is

0 T z & priz),

and the propagator with interaction is

T def _
One should however keep in mind that there is always an € present: otherwise
this interactive propagator is not defined (yet). We also always define gr(x) =
0 for T' < . We can then write the expression (1.8) as
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/ dt ds 0 tOT“"

= / dtds 0

0<t<s<T

where the - means that we take convolution in z-space (i.e. in R3).

The main trouble is evidently coming from the presence of the interaction
summand of (1.6). This is now handled by some simple inequalities which use
the fact that this interaction term is non-negative. We therefore get the two
inequalities

e Blisar > 1 — BIf oo (1.9)
and
—BJE £ 62 € 2
(& tosis, T < 1- 6Jt,s;s7T + T(Jt,s;s,T) . (110)

Implementing the second summand in the right hand side of (1.5) gives a

contribution
—ﬁQ/ d81d82d83d84/dy/dzp81(y)
A(e)

x Ble P ti) §(w,, —y (ws., — 2) (1.11)
X 6(wsy — y)8(ws, — 2)0(wr — )],

where A(e) = {(s1,52,83,84) 1 0 < 51 < 83 < 53 < 84 <T,83— 81 >
€, 84— S > €}

It should now be observed that Jg .. still contains all the interaction
on the interval [s1, s3] and similarly for Jg ;. It looks that we have gained
nothing as things are becoming more and more complicated. However, drop-
ping the remaining interaction between the intervals [s1, s2] and [sa, 33], and
between [s3, s4] and [s4, T gives an estimate in the right direction if we use
this together with (1.9), simply because

JE o > IS .+ g Josr 2 Joysn T Jos

81,83 — 81,82 82,837 83,84

)
)

As the remaining propagator will be crucial, we give it a new name:

[[ dsidsa g, @0, @ . (112)

0<s1<sp<T
so>e, T'—s1>¢
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In diagram notation, we have

S1

. ey

GT(I) = // d81 dSQ 0
0<s1<s2<T W

sa>e, T—s1>¢

X

As this propagator is quite crucial, we introduce a new notation for it:

0 ooy @ G

We will also need the corresponding propagator where the g are replaced
by the free propagator p, but where the e-restrictions on the integration are
kept. This is denoted by

Pi(x) / / 01 d3pay (£)Dss o (2D (),

0<sy<sp<T
s2>e, T—s12¢

for which we use the diagram notation

0 {H— + ¥ P

P%(x) is not defined for = 0 as, even with the gap-condition, the integral
is divergent. However, for x # 0, the integrals are perfectly convergent.

In order to recast the first inequality of (1.9), we still have to look at the
contribution of 1. Implementing this part into (1.5) just means that we forget
about the interaction between [t, s] and [s,t]. We therefore get our first basic
inequality:

(0 x) *(0 ZE) S2 — 81
>3 // dsidsy 0 —1— « WL g ox 0 (1.13)
0<s1<s2<T

S2 — 8§71
s2 T—s9

_52 // dsy dsy 0 . .

0<51<52<T

®
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To get an upper bound, we have to expand the interaction between the legs
in (1.11) in the same way as before, and we have also to take into account the
third summand of the second inequality in (1.10). The reader will convince
himself quickly that all the contributions are of the same form, namely

[ s 02 s (G0 * s a)@) (119

As;{f;'%&%

As. As;

= / R o -
A&(E)

where Ajz(e) is some subset of {s = (s1,52,...,86) :0< 81 <82 < ... <86 <
T} with a number of e-gap conditions, whose exact form will be no longer of
any importance, and As; = s;41 — s; (s7 = T). We will stick to this notation
of As; also in cases where the number m of different s; is not 6, always
putting As,, = T — s,,. The above contribution pops up from multiplying
out the square of the third summand in (1.10), dropping afterwards all the
remaining interactions between the time slots there, and by expanding the
interaction between the time slots in (1.11) once. The inequalities evidently
all go in the correct direction to yield

(0 ) — (0 r) N
51 ASQ {M}
< p / ds 0 . xr x 0
0<s1 <o <T (1.15)
Asy

Aso
2 s
.y / ds 0 L WW@W . x
0<s1<s2<T
Asy : A
A‘jzﬁ}} &7—%“55
$1 Asg

Sq
Asg
T

)

+ 433 / ds 0

0<51 < <s6<T

It is worthwhile to pause and contemplate if anything has been achieved with

the inequalities (1.13) and (1.15). A moment’s reflection reveals that this is

not the case. For instance, the first diagram contains an integration over a

“loop” g,(0) over a time > e. If for the moment, we let drop the interaction

completely, we have [p,(0)ds which is divergent as & — 0. One might think
g

that the interaction could help and [g,(0)ds would be convergent, but this
g
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is not the case. For similar reasons, the second summand is divergent for
¢ — 0 (but actually only marginally). We are more fortunate with the third
summand on the right hand side of (1.15). If we drop all the interactions we
arrive at

ds (p81 * [pASa«pAslpAsQ) * (pA34pAS5))} *PASG)(QT),
As(e)

and if we drop also all the gap conditions (this gives an estimate from above),
we arrive at

ds{p51 * [.pAS:;((pASlpASQ) * (pAS4PA35))] * pAss}(x)a
0<s51<82<83<54<55<56<T

and it is elementary to check that this is convergent! (For d = 3.) Therefore,
there might be some hope that the third summand on the r.h.s. of (1.15) is 0.k.
The way to get also the first two summands right is to modify the definition
of g slightly by introducing so-called counterterms which are cancelling these
divergencies. We will then prove pointwise boundedness and decay properties
by an appropriate recursion Ansatz, assuming 3 small enough.

As these counterterms are supposed to cancel the loop and “three leg”
divergency, we define them by the corresponding objects for the free propa-
gator:

ka(e) = / ds py (0) (1.16)

and
1
ra(e) = [ ds P51
0
= /// d81d82d53/dx Doy (T)Dsy—s, () Dsy—s, (),
0<sy<sz<sg<l1
822>€,83—8122€
1.e.

S1
AsIN |
N Asg

0<s51<s2<s3<1
822>€,53—812€

1

k1(g) is of course just 2(27r)_3/2(ﬁ —1). ko is slightly more complicated to

evaluate. Remark first that

/dmptl (2)Dey (2)pe, () = (27) B[t1ta + trts + tats] /2,
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and therefore

Iig((:‘) = (27‘()73 /1 dtl /1 dtg /1 dtg [(tl —+ t3)t2 + t1t3]73/2 + O (1)
0 0
(e—t1)V(e—t3)VO
Ydu [ 2dv
= (2m)73 — +0(1)
/o u /o \/v(u—v)m((e—v)v(e—Hu))+

1 du u—e 2dv
= (2m)73 au +0(1)
/35 U/a \/v(u—v)+u((€—v)v(5—U+U))+

Vdu [ 2dv
:2w*3/— —_— 1) = (2m) 7?1 1).
(2m) ), m+0() (2m)~"[loge[ + O (1)
We therefore see that this is just barely divergent. The divergence of ks(e)
is actually making all the trouble for d = 3. It should be remarked that
#1(e) is essentially just EJ5, and ro(e) the variance. If the variance stays
bounded as ¢ — 0, one can apply what in quantum field theory is called
vacuum renormalization, i.e. one just replaces J by J— EJ getting something
which is convergent. This is the approach of Varadhan for d = 2 [75]. The
renormalized interaction is now just

RyP = BJir — B(T — t)k1(e) + AT — t)ra(e).

It is important that the time enters linearly into the counterterms. We put

gp(@) & Br(exp(~Ry5)d(wr — ).

We again apply

T
pr(a) ~giala) = [ i Plesp(~Rif)dor — o))

There are only small changes to our inequalities (1.13) and (1.15). The pres-
ence of the counterterms gives only the additional summand

(—Br1(e) + Fha(e)) /0 dt py * gr—i(x) (1.17)

)

= <—6/Elds Q+62/Olds 0%

T
x/dt() L AT
0
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in both cases.

We don’t change our diagram notations, but from now on, the propaga-
tors with interactions always refer to g and not to g, i.e. to the propagators
including the counterterms.

The main pointwise estimate for small g > 0 is

Proposition 1.3. There exists C > 0 and By > 0, such that for all § €
[0,60], T <1,z €R3 >0 one has

Ipr(z) — 97 5(7)| < CBYTpar(z).

The proof of this estimate is by a recursion argument using our basic
inequalities (1.13) and (1.15) with the appropriate corrections coming from
the counterterms, i.e. (1.17). We set

= g(x) — pr(x
Kol — o s 8@ P12
0<T<1 zeks  VTpar(z)
Remark first, that Ky(e, 3) is finite for fixed € > 0, 8 > 0. In fact, for T < ¢,
the interaction is 0, so

97,5(x) = pr(z) exp(BTr1(e) — f*Ta(e)),

so the sup over 0 < T' < ¢ is certainly finite, as pr(x) decays faster at |z| ~ oo
than pop(z). For the same reason, the supremum is also finite on e <7 < 1.
Ky(g, 8) looks being the right quantity for Proposition 1.3, but for technical
reasons, we have to slightly change it, and we set

K(e,8) = Ko(e,8) v /O (ps(0) — g2 5(0))ds] .

The reason is that in order to estimate Ky, one has to use estimates on
[ (ps — gs)ds. Evidently, this quantity itself cannot be controlled by K. This

0
is a slightly awkward point, and for that reason we have to work with K
instead of K.

The main work for proving Proposition 1.3 is then contained in

Proposition 1.4. There exists a polynomial ¢(x) with nonnegative coeffi-
cients, such that for all e > 0,5 € [0, 1], one has

K(e, ) < B ¢(K(e, B))-

The proof of this is a bit lengthy and tedious but essentially rather
straightforward. We give details of some parts of the estimates, namely the
ones involving the divergent “three leg” diagram. In the next section where
we prove convergence, we then focus on the other divergent part. Before we
begin with that, we show how Proposition 1.4 implies Proposition 1.3. We
still need a further result
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Lemma 1.5. For any fized 3 > 0, the function (0,1) > ¢ — K(e,0) is
continuous.

This follows well known techniques concerning intersection local times
(see [64], and the Appendix of [9]). We will not give a proof here. The Propo-

sition 1.4 and Lemma 1.5 imply Proposition 1.3 in the following way:
Let
def .

o(B) = inf{z > 0: 2 = Bo(x)}.

If 8 is small enough then we have o(8) < ¢8. We have K(e,3) = 0 for
e = 1, and as K(g,) is continuous in € > 0, it can never cross o(3). We
therefore get the estimate K(e,3) < ¢f for all € > 0 if § is small enough.
This proves Proposition 1.3.

To come now to the proof of Proposition 1.4, we get, using our inequalities
(1.13) and (1.15) with the correction (1.17) from the counterterms:

|pr(z) — gr(z)]|

T
=1[(0 z) — (0 )]
Asq
s As
gﬁ/dgol-zxx{;}
0<51<52<T
T
s T—s
—m(e)/ds 0 . x (1.18)
0
Asy A
A R S R
0<s1<s2<T

T
—Kg(e)/ds 02« wevin @
0
Asy : As
sy
+463/ds L e S S

Here we have of course the modified definition
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but just without the bar, meaning that the appropriate counterterms are
included. In the last summand of (1.18), the integration is over time slots for
the vertices of the diagram which sum to T. We can drop the various e-gap
restrictions in that contribution, getting an upper bound. In contrast, the
other two summands retain the gap restrictions.

It is now fairly obvious, how the necessary cancellations take place. The
counterterm k1 () is defined in such a way that it cancels the loop divergency,
and kg (£) is made such that it should cancel the “three leg” divergency. For
the third summand, there is no further cancellation needed as it is convergent
anyway. Of course, there is the problem that the times to not fit quite nicely,
and in the second summand, the three leg divergency has to be “operated
out” of the diagram and the remaining two ends “glued together”.

We will not present all the estimates in details, but will show how to
perform them for the second summand, which is the more delicate one.

Lemma 1.6.

d§ 0 $1 ] MM@WM . Asg "

T
—52(5)/ds 0"« W g
0

Asy

0<51<52<T

< ¢(K) Por (l’) T3/4.

Notations We use ¢(x) as a generic polynomial with positive coefficients,
not necessarily the same at different occurrences. K is always K(g,3). We
also use C' as a generic positive constant, also not necessarily the same at
different occurrences, which does not depend on ¢, (.

Remark 1.7. The estimate is better than necessary for our estimate. The
factor with /T appears in the estimate of the first summand on the right
hand side of (1.18).

In order to prove the Lemma, we split things into three parts:
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S1

ds

0<s1<s2<T

/{2(5)/T

B

ds 0

Asq
Asa

s T-s
. x

As1 Asy
s Aso
= / ds 0 — <M@W_%> x
0<s1<s2<T
Asq A
+/d§ (0 M@M T (1.19)
A Asq
o £ S2 X
R 0 T % 1>
s1
d S92 Aso
“|f ]S o
1 s T
s T-5s
— [ d:s ds 0 T
fae- S, fo
0 0

:Il-f—lg-l-]g, say.

(Remember that G and Ps have the gap conditions and particularly are
nonzero only if their time length is > ). First remark that for 7" < 1, which
we always assume, we have

g7 ()] < pr (2) + |pr (2) — g7 ()| < C (1 + K) par (2) - (1.19)

The third summand I3 is very easy, we begin with that. The only difference
between the two contributions inside is that in the first, the integration over
Asy is restricted to € < Asy < so. Therefore, using (1.19), we get

T 1
I = / ds (ps * g7—2)(x) / 1Pl du
SC/ ds(ps * gr—s)(x)|log(s)| (1.20)
0

T

<C(1+ K)por (z) ds|log(s)| < C’T3/4p2T(a:).

0

Next, we estimate I;, which is more complicated. We first split

ty ty

i
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as a sum of expressions of the form hy, (z)he, (x)he, (z), where hy is either
pe(x) or gi(z) — pi(x), but where at least one of the h's is the latter. For
definiteness, let us look at

(91, () = pry (2))p1, (2)pis ()

which we estimate in absolute value by

VLK poy, (2)pe, () pr, (2)
= CVH K [2t1ty + 2t1ts + tots] > *p,(z),

where
o def 2t1tols
2t1to + 2t1t3 + tots '

(1.21)

We also replace gas, in I; by pas, and the difference, where we again estimate
the latter by / Asa Kpaas, (z). Evidently, the more of the V/As terms we have,
the better, so we look what happens if we just have one. Such a contribution
to an upper bound of I is

s VAs1(Psy+4s4 * Do) (T)
- (2A51A82 -+ 2A81A83 + A82A83)3/2

<CK

0<s1<s2<s3<s4<T
§3—512€,54—8222€

(1.22)

where ds def dsy dsa dsz dss, As; def $i+1—s; and o is from (1.21), ¢; replaced
by As;. Of course, there are also summand with K2, K3, K* in the estimates
(and correspondingly more As;), but these can be estimated similarly.

Let us look at what happens with the expression (1.22). Keeping As,

Asy,Asz fixed and integrating over s; gives just a factor ¢ def (Asy +
Asg + Asg) = (s1 + Asy). Furthermore, a simple estimate for o is o <
> ;As; =T —t, which yields

tpi(x) <t V273 2pr_, ().

Therefore,

VELdtydtadt
(1.22) < C’KT3/2pT(a:)/ Ll —
120, ti<1 /1 — Y ti(tite + tits + tat3)3/

< CKT*Ppy(x).

Remark that the 1/¢1 is doing the job of making the integral convergent. The
other expressions get similar estimates, but we cannot always have pr(x).
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However, por(x) is o.k., too, of course. There are also expressions with
K?, K3 K*. Altogether, we get

I < QKT ?pyr (), (1.23)

which is much better than required.

There remains to estimate I (which is the only place where we have to
increase T to 2T in the estimate). Even if we drop all € restrictions, Pf(x)
is evidently finite for = # 0, and has Li-norm ||P?||; = ¢/t. Despite the fact
that this is divergent for ¢ — 0, it is nevertheless true that for t ~ 0, is
PF(x) is essentially concentrated close to 0, and therefore there is not much
difference between p, * P * g, and (ps * gu) X || Pf]; -

If we set

7(s) def [Asy Asy + Asi Asy + Asy Ass] /2,

a(s) def AsyAsgAsyT?/3,

where as usual As; = s;11 — s;, then

Pas (T)Pas, (2)pasy (2) = (2m) 72 7(8)po(s) (z).

Therefore
L<c / A5 7(5) (1Day 4ot — Pos| * gr—s.) (@),

where the integration is over 0 < s1 < s9 < s3 < s4 < 7T, and where we
have dropped the e-gap restrictions. We split the above integral in the part,
where s1 4+ 0 < s4/2 and the complement of this. On {s1 +0 < s4/2} there is
actually no cancellation needed and we estimate |ps, 1o — Ds,| < Ps;+o + Dsss
and of course, we also estimate

9T —s4 < PT—sy + KT — s4por—2s, < O(K)par—as,.

Therefore,
d§7—(8)(|psl+a(s) - p34| * gT—s4)(x)
{81+U<S4/2}
<o) [ st e+ paraerte o))
{s1<s4/2}
<o) [ dsr(slpar(a)
{s1<s4/2}

+ ¢(K) / ds T(8)Par—2s4+s1+0(T)-
{s1<84/2,84>T/2}
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The integration of 7 over sa, s for given s1, s4 is just [|[PY _, |1 = ¢|sa—s1| 7,
and so the first summand is ¢(K)T por(x). As for the second, it is

< ¢(K) /d§ T(s)(T — s4 + 31)—3/Qe—|w\2/4T
{51<54/2,54>T/2}
3T/4

< o(ye i | < 6(K)Tpar(x).

du
Vil — )

Altogether we get

dQT(S)Opsl-&-U(s) - p54| * gT—szl)(x) < QS(K)TPQT(I)

{S1+O‘<34/2}

It remains to estimate the integral over {s; + o(s) > s4/2}. In that case
it would be disastrous to take the absolute value inside. Instead we use the
elementary estimate

Ipu(2) — po(2)| < clu — v pay (),

when v/2 < wu < v. Using this, we get

d§7(5)<‘p81+0(5) - p84| * gT754)(x)
{s1+o>s4/2}

1
< /d§ T(8)(84 — 81 — 0);?254 * 97—, ()

< O(K)par(x) / ds7(s)(s1 — S”i — $(K)Tpar(x),

the integrals of course all restricted to 0 < 51 < 59 < 853 <54 <T.
Altogether, we have

The estimates (1.23), (1.24) and (1.20) prove Lemma 1.6.

In order to prove Proposition 1.4, there are still the other contributions
in (1.18) to estimate, but we will not give the details here, and refer to [9].
There, the following inequalities are proved:



28 1 On the construction of the three-dimensional polymer measure

Asy

51 Asg {:Mj}

/ds()

0<s1<s2<T

<VT oK) 0 2 g

The estimates for this are somewhat easier than for the ,,three leg” diver-
gency, because the loop diagram splits off the rest immediately, and one has
only to take care of the adjustments of the times. On the other hand, the
divergency is more serious than in second summand of (1.18). In the course
to prove the above estimate one needs K at one place and not just Ky. There
then remains to estimate the last diagram, where counterterms are appearing:

Asy . As,
S1 Asg Asg z

O(K) T pyr (x)

/ds 0

The crucial observation is that the corresponding diagram with free propaga-
tors is convergent, which is a somewhat tedious but elementary calculation,
and then one estimates the above diagram by replacing successively the ¢'s
by the p’s, and one catches only additional factors ¢(K).

Combining Lemma 1.6 with the above estimates, one therefore gets

It then still remains to estimate

/0 (p2(0) — g7(0))dT| < BS(K). (1.26)

As there is a slight slip in the argument in [9], we give the proof here.
We use the same expansion which underlies the estimate (1.18). As the
second and third summand on the right hand side of (1.18) are at most
B2(K)T3 *por(z), and T3/ *pyr(0) is integrable at 0, it suffices to prove
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1
‘/ dT /d§ DPsy *9452(0)9A81(0)
0

0§51 SSQST

1 T T
—/ dT/ ds ps * 948(0)/ pS(O)dS
0 0 €

The left hand side of this expression is

< O(K).

1
/ du dv dt(py * g¢)(0)g,(0) — / du dt(py * gt)(O)/ dvp,(0)

utv+t<1 u+t<1
v>e

IN

/ du dt(pu * 62)(0) / dv(p, — 9,)(0)

u+t<l—e

+ [ dudipu s )0 [ (O

u+t<1 1—u—t

<K / du dt(py * g)(0)

utt<1

+ / du dt(pa * 92)(0) / dv[py (0) — gu(0)

u+t<1 1—u—t
+C / dudt(py * g¢)(0)(1 —u — t)~V/2,
u+t<1

We now estimate g; by pr + ¢(K)par < ¢(K)por and get that the above
expression is

< ¢(K) /dudt(u+2t)_3/2(1—u—t)_1/2 = §(K).
u+t<1

(1.26) is therefore proved which implies now Proposition 1.4. We already have
seen that this implies Proposition 1.3.

We now show that the relevant information contained in Proposition 1.3
can be boosted by a rescaling argument due to Albeverio and Zhou [3] to
cover any 3 > 0.
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Proposition 1.8. Let 8 > 0,T < 1. Then there exist constants c1((),
a) 97 5(x) < c1(B)peypyr(®), Ve > 0.
b) es(B) < gz plli < ca(B) -

The basis is the following simple rescaling property

Lemma 1.9. For allT,B3,e >0
G5 5(@) = 62, /5(V22) explale, 5.T)),

where sup |a(e, 3,T)| < oo for all 5> 0.
€>0,T<1

Proof.

9?/2,5(33) =FE <eXP [—ﬁjg,:r/z(w) + %Fffl(f)—ﬂQT@(Q} 5(WT/2—$)>

=232 (exp [\% 367“( )Jr/\@/gn\l/(i) <f/3§> Tka(e) 5(WT\6I)>7

1 12 1 1 2
710~ e (72 =Y) =@+ (1= 75) e
a(e) = r2(2¢) +0(1).

Implementing this, we get the conclusion.

Proof of Proposition 1.8 a). From Proposition 1.3 we already know that there
exists By > 0 such that the statement is true for 8 < y. We now prove that
if the statement is correct for 8 < ﬁ, then it is correct for 8 < V20 203.
Let 6 < v/23,T <1,e > 0. Then
97.5(x) = B (exp[~Bgf1o(wr — x))

< E (exp[- R, — Ry 7)o(wr — )

= (9?/2 B * 9T/2 ,3)(33)

< et T)( /\f(f ) * 9;65/\/5(\/5))(@

< 23/2¢a(e8, T)Clp2czT(fx)7

where ¢; = ¢;(8/v/2). As pa(v/2x) < Cp,(x), this proves the claim.
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Proof of Proposition 1.8 b). The upper bound follows from part a), so it
remains to prove the lower bound. First remark that from Lemma 1.9 we get

952,511 = (D 5 51l (1.27)

We again use “induction” on (3. Assume that the lower bound in Proposi-
tion 1.8 b) is correct for 8 < 3, and assume 8 < /2.

Let P(g) (with corresponding expectation E2)) be the product measure
of two independent Brownian motions of length 7'/2. If wy,wq are two paths,
we write

T/2 T/2
Js(wl,(Ug) = / dS/ dtls—i—tZs (5((4.)1,3 — w27t).
0 0
Then
g sl = B exp | R55. 5 (w1) = By jp(ws) = BT (wi,ws)]

Let P8 be the polymer measure (with gap €) on paths of length T'/2, and
P(‘Sz)ﬁ be the corresponding product measure. Then

975111 = 11972, 1T EG3) exp(~BT°)
> c(8)° 19355, 513 exp(—BEG) ),

by (1.27). By the induction assumption, we have ||gigﬁ/\/§||1 > ¢1(0). In order
to prove the result, we only have to estimate

EE,HJE // ds dt E(2)
) ||9T/2 BHI 0<ss+tt<>T/2

{ ~RE ) RO 5 (1) | t)}

from above, and we again estimate ||gT/2||1 from below with (1.27) and the
induction assumption.

Epy {exp(= R s w1) = R s @2))d(rs — wai) }
< / dwg? 5(@) 95 5 @)1\ 5o 511195 2e 5]
<c(B) /dxpcl(ﬁ)s(x)pcl(ﬁ)t(x)

< e(B)pe, (1) (s+4)(0) = c2(B) (s + t)=3/2.

Integrating over s, t gives the desired claim.
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We can already derive an important conclusion

Proposition 1.10. For all § > 0 the family of measures
{Piﬁ}6>0
is tight.
Proof. The counterterms play of course no role for the measures. So
P 4(dw) = exp(—Rg{ () Pi (dw) /|5 511
Therefore for 0 <t < t+ s <1 by Proposition 1.8
[t = a1 P ()
< C(B) [ o — vl expl(~ RS () Pr(do)
4 B,e 3,e B,e
< C(B) [ fon — vl exp(~ RS - RIF, — RIS )P ()
= C(9) [ dwdydz gu()g.ly ~ D)g1-ro(z ~ ke o’
<C@)|t - s|*.

The tightness follows now by standard criteria.

The above proposition of course implies that the measures If’fﬁ have
convergent subsequences as € — 0. In the next section, we prove that the
lim._,o Pi 3 exists.

1.3 The convergence of Pr e —0

It is evident that the inequalities presented in Section 1.2 are not able to
prove convergence. The reason simply is that the difference of the upper and
lower bounds deviate by the contribution

A;}’ﬂ ° Asy
s As As,
0 o 3 . o T

[ as
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which does not go to 0 as € — 0, but only stays finite. We would be much
better off, if one of the integrations involved would be only over an interval
which becomes small with €. The idea to achieve something of this type is to
differentiate with respect to the gap width € > 0. To do this, the gap regular-
ization is evidently much better suited than e.g. a lattice regularization. As
mentioned in the introduction to this chapter, it can also be proved that the
lattice regularization measure converges to the same limit. However, there are
considerable additional difficulties popping up and we will not go into that.
It should also be remarked that the inequalities we will get by differentiating
with respect to € > 0 are somewhat more delicate to handle for reasons which
will become clear. We will heavily rely on the boundedness (and tightness)
properties already obtained in order to estimate these diagrams.

Let 1 : [0,1] x R* — R be bounded and smooth, and for 0 < s <t <1
define ¥ ; : 2 = R by

U, 4(w) = exp {/: ¢(u,wu)du] .

The functions ¥ = ¥y, : 2 — R will be convenient for us. They form a
convergence determining class, i.e. if we prove that

: DE
lim [ wdP; (1.28)
exists (for suitable T, 3), then we have proved convergence of the measures,
given of course the tightness which is already proved. We fix T = 1. Given

the estimates in Proposition 1.8, we prove the convergence of the expression
(1.28): Let

oy(e) = /Wexp(ng;f)dpl.

Proposition 1.11. For any bounded function 1 and all B > 0 there exists
an integrable function i : (0,00) — (0,00) such that for any ey > &1

oy(e2) — oy(er) > — /62 i(e)de.

€1

The bound together with the bounds in Proposition 1.8 immediately prove
Theorem 1.1 (for d = 3). Indeed as the gy () stay bounded by Proposition 1.8,
Proposition 1.11 implies that lirr(1) oy (€) exists. This together with the tight-

£—

ness proved in Proposition 1.10 proves the convergence of the measures.
We fix now ¢ bounded and smooth (with bounded derivatives of all de-
sired order, say) and we write just o(¢). First, we simply write

£2 d
o(e2) — o(e1) = d—gde.
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We actually do not want to prove that % exists. This can be circumvented
in the same way as in Section 1.2: We replace all § function by pl s, derive
the necessary inequalities and finally let go a — 0 in the end. This is evi-
dently somewhat cumbersome to write down, so we pretend that we can work
directly with the § function. Differentiating gives

o) = [ asBle b0, — ) + (94 (0) — P5(eN)ele) (129)

The crucial point is now as follows. Rgf of course still contains all the in-
teractions, and we somehow want to expand that out like in the previous
section. Especially, we want to expand out the interactions between the in-
terval [s,s + €| and its complement. This will lead to contributions which
cancel the nonintegrability of the counterterms. The delicacy is coming from
the fact that we are not allowed to expand the interaction of the time before
s and after s+ ¢ out in any way. Although these contributions are finite, they
would, if expanded by Taylor only once or twice, lead to a destruction of all
the cancellations. It is therefore better not to expand the interaction cross-
ing the ,,loop interval” [s, s + €]. We therefore have to control the necessary
cancellations in the presence of the interactions of the time before s and after
s+e¢. Let ~

Rg:f = RS:?E + ﬂJOE,s;s,s—i-e + ﬂjﬁ,s+s;s+5,1’ (130)

where

RS =Ry:+ RIS+ BJosisten — Bern(€) + Bera(e). (1.31)

As remarked above, the presence of the Jy g5+ 1-summand in (1.31) is mak-
ing a lot of trouble. Of course, we would like to argue that the term obtained
when dropping the two last summands on the r.h.s. of (1.30) is cancelling
with x/(¢), and expanding these contributions once is cancelling with x4 ().
However, this will be a cancellation of divergent terms (as ¢ — 0) and as in
Section 1.2, some surgery will be needed to operate the divergency out. The
crucial point is that we do not want to expand out any interaction unless it
is an interaction connecting an e-piece to something else. In this way we get
estimates which after the cancellation of the divergencies become controllable
for e — 0.

We give some details for the first part where the contribution coming
from R cancels with ;. We then give a sketch how the rest is done the
cancellations with &/, are done.

We use ¢ as a generic function (0,00) — (0, 00) which is integrable near
0, not necessarily the same at different occurrences.
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Proposition 1.12.
1—¢ .
/ dsE(e™016(ws — we )W) + K1 (€)0(e) > —i(e).
0

(We usually drop 3,€’'s at places where they obviously have to be, e.g. in R)

Proof. We set

Then
E(e‘ég& O(ws — wse)¥) = E(e‘ﬁzé,lé(wS — Wete)W0 sWste1(1 4+ O(e))).

The 1+0(e) is just the ¥ ¢4.. There is evidently no interaction inside [s, s+¢]
because of the gap, and in R we have left out the interaction of the “loop”
with the rest. We take separately the expectation over d(ws — wsye) which is
just pe (0) = —kf (), and “glue” the second half of the path to the first, but
then the interactions do no longer quite fit, because we no longer have any
gap condition between the path before and after s, after having cut the loop
out. To restore this, we have to correct by Y;: Using (1.31) we get

E(e T016(wy — weye)¥)
= pe( )E(G*RO,I—E*BYSW66551(5)6*525H2(5)(1 +0(e))
= pE(O)E(e_ROJ*E_BYS![/(l + Bek1(€))(1 4+ O(e|logel)).

(=}

There is, of course, also an adjustment of ¥ by the cutting out of the loop
interval, but this give only a contribution 1 + O (g). It is evident from the
considerations in Section 1.2 that Eexp(—Rj,_. — BYy) stays bounded (as
e — 0), and so we can neglect the 0(¢|loge|) contribution as p.(0)e|loge| is
integrable at 0. However p.(0)ek1(¢) is not integrable, a fact with which we
are pleased as it will cancel the contribution coming from Y;. As Y; > 0, we
get
e—ﬂYS 2 1- ﬂY—sv

and therefore

1—e -
/ ds E(67R8’15(Ws — wse)¥)
0

> pE(O)(l + ﬁc‘f:‘ﬁ]((f:')) /0 N ds {E(e_RO,l—EW) _ ﬁE(Yse—Ro,l—sw>} _ Z(E)
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It looks obvious that
E(e~for=ew) = E(e™ W) + O(e) = o(e) + O(e),

but I don’t know how to prove this. We would need something like a bound

for p
—R(),U
—dvE(e v).

That is close to what we have done in Section 1.2, but there the integration
over v was important. (That we differentiate here with respect to the upper
boundary in contrast to the lower is of course of no relevance.) However, one
can squeeze out of the arguments in Section 1.2 a slightly worse bound which
is good enough for our purpose:

Lemma 1.13. There exists § > 0 such that
|E(e™Boaw) — B(e~Foa-—w)| < Cel/2H9,

We will not give a proof here as it is essentially a repetition of some of
the steps of Section 1.2 (see p. 96 of [9]).

End of proof of Proposition 1.12. With the help of Lemma 1.13, the proof is
now easily finished: We have

E(Y,e Boa-cp) = / dudv E(6(wy, — w,)efor-<w)

IA
S
<
|
S
—~
o
~
=
—~
°
o]
L
|
i
<
|
£
S
~—
+
el
—
)
w
~
[\
~

where we have just dropped the interactions between the interval [u,v] and
the rest, and the “less than €” interaction after readjusting time. This in-
creases the expression. The readjustment of ¥ gives only

O (e) ﬁgugsgv dvdup,—, (0) = O (53/2) .

v—u<le

which we can incorporate into i(¢). By Lemma 1.13, we can replace
Ry 1 —c—(v—u) by Ro,1, making an error which again can be incorporated into
i(€). Therefore, we get
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1—e -
/ ds E(e f015(wy — we_o )W)
0

> po(0)(1 + fer(£))e(e) | 1— 8 / s / pou(O)dudo | —i(e)

= pe(0)o(e) —i(e),

aseri(e) = [ Tds [ pu—u(0)dudv + O(e), and as pe(0) = —x} (¢), this
g

proves Proposition 1.12.

From Proposition 1.12, we get

d

1—¢ -
d€ ( ) > 52/ dSE (e_RO’lé(ws - ws+z—:) [JO,s;s,erE + Js,s+6;s+5,1] W)

(1.32)
X (1+0(/V3) = N L 1y(e) ~ i(e).

In order to finish the proof of Proposition 1.11, it therefore only remains
to show that there is some cancellation between the first and the second
summand on the right hand side of the above inequality, which leads to
something integrable in e. %/ﬂg(e) is of order 1/e, so it is clear that not
much cancellation is needed. This helps very much, and allows for application
of relatively crude estimates. On the other hand, it is also clear that the
cancellation is here somewhat more subtle than the one in Proposition 1.12,
because the three leg diagram is more delicate to handle than the loop one.

I will not give the details here of the estimates, as it is a bit repetitive
of what had been done in Proposition 1.11 (and in the last Section). Here a
short outline: One of the problems is of course that Jy s s4+e and Js sieisye,1
contain interactions which go outside the interval [s, s +¢], so they come into
conflict with RS 1- As remarked at the beginning of this section, it is not

possible to cancel or expand the interaction inside Ro ; which ties the part
before and that after s. However, it turns out that we can essentially neglect
the interactions inside RO 1 which come into conflict with the above J-terms.
What helps here a lot is the fact that the divergency is only logarithmic, and
one can work with somewhat crude estimates. What one does is to choose
some parameter 0 < 7 < 1, whose value is not very important, and cut out
from ]%8,1 all the interactions with the intervals [s—¢7, s] and [s+¢, s+e+€7].
However, we retain (this is crucial) the interaction between [0,s — 7] and
[s4e+¢7,1]. This surgery cost an error which can be incorporated into i(e).
This is essentially an argument like the one involving the Lemma 1.13 above.
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Likewise, we drop inside Jy s.s s+ the interaction between [0, s—¢7] and [s, s+
e], and similarly for J sye;s4<,1. In this way, we keep the interactions inside
(1.32) separated, and we can now operate the divergency out, cancelling with
the derivative of k9. There arise now the same problems we had encountered
in the last section, namely, that in contrast with the situation with the loop
diagram, one has to “glue” the two loose ends together, after taking out the
three-leg diagram, but this can essentially be handled in the same way as we
did it in details in the last section. One then still has to restore the interaction
with the now “void” interval [s — &7, s + & + 7], and one has to show that
this gives again an error which can be incorporated into i(¢).

The whole procedure is a bit messy and needs some care, but it should
be fairly evident that with the tricks already developed, this can be done,
and (1.32) can be proved in this way, leading then to Proposition 1.11. For
further details, see the [9].

It should be emphasized that the above considerations do not depend
on having § > 0 small. The argument are valid as long as the estimates of
Section 1.2 are true, that is, according to Proposition 1.8, for all 8 > 0. So
Proposition 1.11 follows for all 5 > 0.

I would like to finish this chapter with two

Remarks:

e A shortcoming of the above argument is that we have used at various
places that ¥ is a smooth function. In fact, I don’t have a proof that
lim.,0 g7 3 (x) exists, although there is no reasonable doubt that it is true.
To prove this would need refinements of the arguments at several places,
and would probably be quite delicate.

e Finally some comments about the direct xz-space method developed here:

Various considerations would become, of course, simpler in Fourier-space,
and applying Laplace transforms in time. It is, however, somewhat delicate
to implement the monotonicity properties coming from the positivity of the
interaction into properties of the Fourier-transforms. Also the diagrams are
most easily estimated if one has good pointwise estimates of the two-point
functions. Also taking Laplace transforms in time leads in the end to the
problem to invert these in order to get results for fixed time. This inversion
is notoriously difficult. So, in the end, I believe that working directly in
x-space and at fixed time is giving better results.
Another example where direct z-space methods have been developed is the
recent new method to prove diffusivity for weakly self-avoiding random
walks for d > 5 [18] which leads to somewhat stronger results obtained
in a more direct and transparent way in comparison to the treatments
developed originally (see [59]).



2. Self-attracting random walks

2.1 Introduction

We discuss in this chapter a number of problems of random walks with self-
attracting path interactions which are all closely related to large deviation
theory. A simple case of an attraction would be just to change sign in the
(weakly) self repellent case of Chapter 1. For technical reasons, it is convenient
to work with continuous time but discrete state space Markov processes.
Therefore, we consider the standard symmetric random walk on Z¢ starting
in 0 having holding times with expectation 1/d. The path measure on the
space Do, = D([0,00),Z%) of right continuous piecewise constant paths is
denoted by P. We will also write Dp for the set of paths of length T. As
usual, we write X;(w) = w;, w € Dy for the evaluation map. We then
transform the path measure in the same way as in the weakly repellent case,
just having the opposite sign of the coupling constant:

5 def T T
Prs(dw) = exp [ﬁ/ ds/ dtl =,
0 0

However, it is easy to see that this is not an interesting object, as the self-
attraction is far too strong. In fact, a path staying just all the time at 0 up
to time T gets a weight exp [ﬂTﬂ , whereas the entropic cost for doing that
is only of order exp [—cT]. It is therefore evident that as T — oo the path
measures just concentrates with probability going to 1 on the path identical
to 0. A more interesting object is obtained when having the interaction only
of order 1/T. Therefore, we define for § > 0:

- def g r
Pr 5(dw) = exp T/ ds/ dt1,,—w.
0 0

This path measure has been investigated in two papers [24] and [14]. In the
first one, it was shown that the for d > 2, the measure behaves diffusively
if 8 is small enough (actually for discrete time walks), and in the second, it
was shown that for d = 1, and in all dimensions if § is large enough, the path
measures is localized in the sense that the end points wr have fluctuations
of order one, but these fluctuations stay non-trivial in the 7" — oo limit.

P(dw)/ZTﬁ, ﬁ > 0,

P(dw)/ Zrg  (21)
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Therefore, for d > 2, there is what is called a collapse transition if § grows
from small values to large ones. We will give the argument for the diffusive
behavior in Section 2, and discuss the localized phase in Section 3.

There are other models which have a similar behavior. One case is Brow-
nian motion transformed by the Wiener sausage in such a way that large
volumes of the sausage are suppressed. For a random walk the réle of volume
of the sausage is played by the number Np(w) of sites visited up to time T,
and for these, this would correspond in transforming the path measure P in
the following way:

dPr 5(w) < exp [~ BNp(w)] dP(w)/ Z1 5, (2.2)

where et
Zr = FE (exp [-BNr(w)]).

It had been proved in [11] (and in [72] for the Wiener sausage) that for d = 2
the path measure is concentrated on paths which stay inside a ball of radius
of order T/, This is closely related to the classical analysis of Donsker and
Varadhan of the leading order asymptotic behavior of Zr g. Sznitmans re-
sults and techniques have been extended recently to arbitrary dimension by
Povel [62]. We will give a discussion of these results in Section 2.5. Sznit-
man’s approach uses the enlargement of obstacles techniques (see [73]). The
approach in [11] is more combinatorial by “path counting”, and is rather
involved. The problem amounts to a droplet construction, where the macro-
scopic droplet is trivial, namely just a ball. It is remarkable that one can
prove that in all dimensions the microscopic droplet approaches the macro-
scopic one in Ly, —norm (at least from “outside”), whereas the corresponding
analytic variational problem is stable only in L; (for d > 3). We will not be
able to present the details here, but we will give a discussion of this aspect.

This model has no collapse transition: For all 3 > 0, the path measures
lives on a droplet of scale TV/(4+2) However, an interesting and somewhat
unexpected features shows up if we make the self-attraction weaker by re-
placing 3 by a coupling constant which goes to 0 as T'— oco. Fix a > 0 and

define
ZT,[B,a déf ) (exp |:7?QNT(QJ):|) .

One way to estimate this is just by Jensen’s inequality, which gives the trivial
estimate

Zr 3,0 > €Xp [—TﬁaE (NT(w))] .

It is well know that for d > 3, asymptotically E (Nr(w)) ~ dxT, where & is
the escape probability for a discrete time random walk from a single point.



2.1 Introduction 41

(The factor d is coming from the holding times having expectation 1/d). For
a = 0, this estimate is very bad as it is known from the classical work of
Donsker and Varadhan [34] that Zr ~ exp [—cT% (@] Tt turns out that
the Jensen estimate is essentially sharp as soon as a > 2/d. Similar to (2.2),
we can define a path measure

= def _

Prg.o (dw) = exp [~BT~*Nr(w)| P (dw)/ Z,
but these measures have not (yet) been investigated in the literature. The
fact that the Jensen estimate is essentially sharp for o > 2/d suggests that
this path measure is just diffusive in this regime. As « crosses 2/d, there is a
collapse transition: Jensen’s inequality is no longer sharp and in fact

E (eXp [—ﬁT_aNT(w)]) g exp [—const X T(d_Q‘O‘)/(Q"'d)} , (2.3)

g meaning that the quotient of the logarithms tends to 1. This is been
proved in [10] and [70]. The somewhat strange exponent of T will become
clear in Section 2.5. The Povel result suggests, but this has not been proved,

that for o < 2/d, the path measure is localized on scale T%, and for o >
2/d, it is just diffusive. Remark that the critical case a = 2/d (d > 3),
would correspond to the path measure living on a subdiffusive scale T/,
This critical case has recently been investigated in [6] and there are some
quite interesting features. For instance, it turns out that there is a collapse
transition from small to large (. I will discuss this critical case in Section
2.6, but again, up to now, the path measures have not been investigated, but
only the “free energy”, i.e. an asymptotic evaluation of the type (2.3).

There are several motivations for the investigation of these problems. In
the physical literature, the main interest in collapse transitions are for mod-
els which have a mixed attractive and repulsive interaction. Mathematically,
essentially nothing is known, not even about the diffusive behavior in high di-
mensions. For the physical background, see [20], [21]. As an example, consider
the interactive random walk (in discrete time, say), defined by

A 1
angﬂ’ (w) - exXp 76 Z 1(.071:1;).7' + vy Z ]-‘wi—o-u'|=1 )

Z
B,y 1<i<j<n 1<i<j<n

8,7 > 0. One would expect that if v <« 3, and at least in high dimension, the
repulsion dominates the attraction, and the model would just be diffusive.
There is however no proof of this, and it appears that the lace expansion
with which the diffusive behavior for ¥ = 0 has been proved is completely
powerless as soon as there is a positive . In the physical literature, there is
a collapse transition predicted if one changes the parameter ~.

Some of the investigations above had been motivated by the long-standing
open problem to determine the effective mass of the so-called polaron in the
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strong coupling regime, which is a (one-dimensional) model with a Kac-type
potential and a continuous symmetry (actually a shift degeneracy). This is
closely related with some of the models discussed here, but it is still (mathe-
matically) an open problem. For a heuristic derivation, see [68]. We will give
a short discussion of this in the final section of this chapter.

It is not possible to give proofs of all the results presented and I will
concentrate on those parts which I think are the most instructive ones. In
particular, I give a proof of the probabilistic part of the evaluation of the limit
of the model (2.1). The proof presented here incorporates some simplifications
of the one given in the original paper [14].

To finish this introduction, I state some of the relevant facts on large
deviations, which will be used during this and the next chapter. For proofs,
see e.g. [43].

Let Ypr, T > 0, be a stochastic process, where T is either € N or € R,
which takes values in a Polish space X. Let further (ar),-, be an increasing,
real-valued, positive function of T. One says that (Yr) satisfies an (ar)-
large deviation principle (LDP) with rate function I : X' — [0, o], if the
following properties are satisfied:

L1 I is upper semi-continuous and has the property that for any a > 0, the
set {x € ¥ : I (z) < a} is compact in X.
L2 For any closed subset A C X, one has

limsupay'log P (Yr € A) < — inf I ().
T—o0 €A

L3 For any open subset A C X', one has

liTrrLioréfa;l logP (Yre A) > —Iireljfé‘l(x).

There are a number of cases, where only a weaker form is valid, namely
where L1 is replaced by just the semi-continuity condition, and L2 is required
only for compact subsets A of X. In such a case one says that a weak large
deviation principle holds.

A consequence of a LDP is the following result, called Varadhan’s Lemma

Lemma 2.14 (Varadhan). Assume that (Yr) satisfies an (ar)-LDP with
rate function I. Then for any continuous function F : X — R which is
bounded above, one has

Tlim 1 log E (exp (arF (Yr))) = sup (F (z) — I (x)).
—o0 AN zeX

Remark 2.15. If F is only upper semi-continuous, then one gets an upper
bound for the limit superior, and if F' is lower-semicontinuous, one gets a
lover bound for the limit inferior.
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Here the examples which are important for us. The first is the Sanov-
Theorem:

Let X;, t € N, be a sequence of i.i.d. random variables, taking values in a
Polish space S, with law u. The so-called empirical process is defined by

def 1ZT
€
LT - ?tZI(SXt.

Lt takes values in the space M (S) with the weak topology. M| (S) is a
Polish space itself (more precisely, there is a metric, e.g. the Prohorov metric,
which metricizes the weak topology, and with which the space is Polish). Then
we have

Theorem 2.16 (Sanov). (Lt) satisfies a T-LDP with rate function I given

by
1) =kl [0 (jﬂ) v,

where I (v) is defined to be co if v is not absolutely continuous with respect
to p or if the logarithm of the derivative is not integrable.

Another case of great importance for us is the celebrated large deviation
theorem for the Brownian motion by Donsker and Varadhan. For this, we
consider a d-dimensional Brownian (3;),~, and again the empirical distri-
bution B

_TO

Theorem 2.17 (Donsker-Varadhan). (L) satisfies a weak T-LDP with
rate function I given by

2
I(’U) d;f ||Vf||2’
2
where [ = +/dv/dz. I (v) is defined to be co if v is not absolutely continuous

with respect to Lebesgue measure, or when f is not (weakly) differentiable
with gradient in L.

The fact that the empirical distribution satisfies only a weak LDP causes
a lot of problems. One way out is often by a compactification procedure. The
fact is that the Brownian motion on a compact manifold satisfies a full LDP.
The case which is important for us will be the Brownian motion on a flat
torus, i.e. just the Brownian motion which is wound up periodically.

Convention: During this chapter, we again use C' as a generic positive con-
stants not necessarily the same at different occurrences. It may depend on the
dimension, and on a fixed coupling constant (3, but on nothing else, except
when indicated clearly. In contrast, we use ci,co,... for positive constants
which stay fixed after having been introduced.
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2.2 A maximum entropy principle

To start with, we consider the following trivial problem. Let X, X5,... be
a sequence of independent coin tossings: P(X; = 0) = P(X; = 1) = L. If
a > %, then by the Bernoulli law of large numbers

P(S,/n>a) =0,

as n — 0o, where S,, = > | X;. Question: what is the limiting distribution
of X1, if we condition on the event {S,,/n > a}? The answer is evident:

lim P(X; =1|85,/n>a) =a.
n—oo

Similarly, the conditional distribution of Xi,..., Xy, converges (in total
variation) to coin tossing if k(n) = o(n). (This can of course not be true for
k(n)=n).

We consider a slightly more general problem. We assume that the X; are
i.i.d. random variables, taking values in a Polish space S equipped with its
Borel field S. P is the product measure of the law p, of the X; on 2 = (S, S)V,
with the X; being the projections 2 — S. The empirical distribution is

1 n
L, = ﬁgéxi.

Let further F' : M7 (S) — [~o0,00) be an upper semicontinuous function.
We will assume that F' is bounded above, but it may take the value —oo. We
consider the transformed measure on 2

- 1
dP, = - eXp [nF(Ly)] dP.

Zn = E (exp[nF(Ly,)])

By Sanov’s Theorem, and the upper semicontinuity of F, we have

1 d
limsup — log Z,, < bp def sup [F(u) — /log < a ) dp] , (2.4)
n—oo N m d/-’/o
and if F. is the lower semi-continuous modification of F, then
1
liminf —log Z,, > bpg, . (2.5)
n—,oo N

Proposition 2.18. Assume bp = bp, > —oo (which in particular is true if
F is continuous). Then the sequence {P,} is tight in the weak topology on the
set of probability measures on 2. Any limiting probability measure @ has a
representation Q = [ uNI'(dp), where I' is a probability measure on M7 (S)
which is concentrated on

Kp = {M 1 F(p) — /log (j:o) dp = bF}
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Remark 2.19. This is a very weak formulation of a so called propagation of
chaos result. For much stronger variants (under more restrictive conditions
on F), see [5].

Proof. The proof is a very easy application of the Sanov Theorem. As the
rate function has compact level sets, it follows that K is a compact subset
of M7 (S). Moreover, if U.(Kr) is an open neighborhood of K, it follows
from (2.4), (2.5) and the assumption by = bp,_ that

lim P, (L, € U.(Kr)) = 1. (2.6)

n—oo

In fact, P, (L, ¢ U.(Kr)) = E (exp [nG(L,)])/ E (exp [nF(L,)]) , where we

set G Fon (U.(KFr)) and —oo otherwise. Then the denominator behaves
in leading order as exp [nbp], whereas the numerator can be estimated from

above in leading order by exp [n SUp,eu. (i) [F (1) — [ log (dp/dp,) d,uH <
exp [nbr].

From (2.6) it follows that the sequence (PnL; 1) N of probability mea-
n>1

sures on M (S) is tight and any limit measure is sug)ported by Kg. Now,
we decompose

B, ()= /M1+<s> By (|Ln)d (PnL;1> .

Evidently, we have P, (-|L,) = P, (-|L,), which is just drawing without re-
placement. It is well know that for large n, drawing without replacement is
asymptotically the same as drawing with replacement, if we consider only
o(n) drawings (which is much more than we need for weak topology consid-
erations). Therefore, in the weak topology (and also in some stronger ones),
P, (|L,,) is close to LY. From this, we easily see that the sequence { P, }n>1
is tight (as a sequence of probability measures on {2), and every limit point
is of the required form.

The above Proposition evidently applies to the coin tossing example at
the beginning. The empirical distribution there is just the relative number of
1’s in the sequence, and we take F' = 0 if this is > «, and —oo otherwise. It
should however be remarked that already quite simple modification of this
trivial example can become quite delicate, as is revealed by the following
example (see [29]):

Exercise 2.20. Start with the coin tossing sequence of length n as above,
and define

n—1
T, = Z Lix;=1,X,4,=1}-
i=1
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Then determine
lim P(X; =1|T,/n> «a)

n—oo

for a > 1/4.

The exercise falls into a category of problems running under the heading
“equivalence of ensembles”, in that case between some type of microcanonical
and grand canonical ones. There are still many open problems in this field
(see for instance [53]).

Remark 2.21. If Kp contains just one point, say u, then the Proposition
states that P, converges to p. If K contains more than one point, then
one usually has to derive finer asymptotics in order to evaluate the limit law
of P,. The situation we encounter in some of the following sections is more
delicate than the one in Proposition 2.18, mainly because there K contains
more than one point (and is not even compact).

The models we discuss in this (and to some extent also in the next) chapter
are all variations of the above situation: The path measure of a “simple”
process is transformed by a density of the form

exp [H (path)] dP/E exp [H (path)],

where the “Hamiltonian” H is given by some self-interaction of the path (or
in the next chapter by some interaction with a “wall”. What large deviation
theory in these examples provides, is an asymptotic evaluation of the normal-
izing Eexp [H (path)], usually up to logarithmic equivalence. This is usually
far from sufficient to determine exactly the path measure, which will be the
main task in some of the next sections. The above Proposition 2.18 is in this
respect a bit misleading.

Let us now start with discussing the self-attracting random walk. P is the
law of the standard symmetric random walk (in continuous time), starting
at 0, with holding times of expectation 1/d, and we define the transformed
path measure PT’L.; by (2.1). It is formally convenient to have PTﬁ defined
as a measure on paths of infinite length, i.e. on Dy, = D ([0,00),Zd) . Of
course, after time 7' it is just an ordinary random walk. Remark that the
Hamiltonian fOT ds foT dt1,,—,, can be written as T |[l7||> where I7 is the
normalized local time:

def 1 r
Ir(z) = ?/o lix,=z}ds,

and ||I7]|3 = 3, lr(x)?. Clearly, Iz is a random probability measure on Z%.
It satisfies a weak LDP (see e.g. [30]):
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Proposition 2.22. (Ir),s, satisfies a weak LDP in M (Z) with rate

function I(u) = %Zmy)(\/ﬂ(x) — /1(y))?, where summation is over (un-

ordered) nearest neighbor pairs x,y.
From this proposition, we easily get:

Proposition 2.23.

o1 .1 2
Jim - log Zr = lim - log Eexp [AT iz} (2.7)

— () & sup [ﬂZu ]

Proof. This is essentially Varadhan’s Lemma but there is a slight problem.
If F: Mf(Z%) — R is continuous, and has the property that {4 : F'(u) > a}
is compact for all a, then by a version of Varadhan’s Lemma we get

lim = log Fexp [TF(lr)] = sup (F(p) — I(w)) -
T—oo T 1%

In our case, we take F'() = > u(x)?, but this evidently does not satisfy the
above compactness property. There is however a very simple trick. Consider
the periodized situation, where we replace Z% by a finite discrete torus T =
{0,..., R—1}%, and correspondingly a symmetric random walk with periodic
boundary conditions on this torus. We can just map the old random walk by
“winding it up” in an evident way. Then we have

lirl2 < (123, (2.8)

where [£(x) is the local time for the wound up random walk on the torus.
Now, for the random walk on the torus, we evidently have a full LDP, because
M (TR) itself is compact, with a rate function I7(u) = %Z<l (V@) =

u(y))?, the only difference being that the summation is now over nearest
neighbors on the torus. Therefore

1 1
lim sup T log Z7 g < li;njup T log E exp [ﬁT qup“zHﬂ
[ee]

) e [ 5 to 1760)|

and it is easy to see that limpg_, o0 bR(ﬁ) = b(B). Therefore, we get
lim sup log Zrs < b(B).
T—o00

The lower bound is no problem and follows from the weak LDP (and the
continuity of the functional).
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It should be remarked that the above monotonicity argument is rather
special. It depends crucially on (2.8). We will encounter in Section 2.4 a
situation where such a procedure cannot immediately be applied, and where
things become then more delicate. Having the above large deviation property,
a natural first question is to ask whether or not there are minimizers of the
variational problem. This is directly connected with the question if b(3) > 0.

Proposition 2.24. a) Ifd =1, then b(G) > 0 for all 5 > 0.
b) If d > 2 then there exists B..(d) > 0 such that b(3) > 0 for § > Ber(d)
and b(B) = 0 for B < Bur(d).

Proof. Evidently, b(8) is increasing in , and furthermore, b(3) > 0 if g is
large enough. This simply follows from the fact that I(d) is finite. Therefore,
it remains to prove that for d = 1, we have b(8) > 0 for all 8, and that for

d>2
ZM 2<CI(p). (2.9)

We start with the one dimensional case. We define a sequence of measures
which become flat and flatter:

max(1 — |z|/n,0)?

&n ’
where &, is the appropriate norming. Evidently, £, ~ Cn. Therefore,
>, bn(®)? ~ C/n, and I(u,) ~ Cn~2. Therefore, 35 pun(z)* > I(un)
for any 8 > 0 if n is large enough. This proves a).

The inequality (2.9) follows from the (discrete version of the) Sobolev
inequality

Mn(aj) =

4 2 2
lglly < Cllgllz [Vl

applied to u(z) = g?(z), which holds for d > 2. Here V denotes the discrete
gradient.

It turns out that if b(8) > 0, then there exist solutions of the variational
problem. Let

Ky def {M c MT(Zd) :ﬁzu<x)2 —I(p) = b(ﬁ)} . (2.10)

One of the basic difficulties we will encounter is that Ky is shift invariant:
Any shift of an element of Kj is again in K3. We summarize the basic facts
about this set.
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Proposition 2.25. Assume b(3) > 0. Then

a) Kg#0.

b) Any pu € Kg satisfies u(y) > 0 for all y € Z°.

c) There exist C > 0 such that for any p € Kg there exists x,, € 74 with
w(y —x,) < Cexp[—|yl/C] for all y.

The proof is not difficult, but a bit lengthy. T will not give it here (see
14)).

A natural question is if there is uniqueness modulo shifts as soon as
b(8) > 0. Unfortunately, I don’t know the answer, not even for d = 1. Cor-
responding uniqueness questions for variational problems in the continuous
setting on R? have a long history with many results. However, the knowledge
about similar questions on Z¢ is essentially zero. One of the difficulties in the
discrete situation is that standard symmetrization techniques do not work.
The discrete problems seem to be inherently more delicate than the contin-
uous ones. Take for instance the variational problem in the one-dimensional
case, but in the continuous situation. This just is the problem to maximize

5/ tde — f/g’(m)2dx,

subject to the condition [ g(x)?dxz = 1. It is easy to see that modulo shifts,
there is just one solution of the Euler equation

4Bg(x)’ + ¢"(x) = Ag(z) (2.11)

which decays to 0 at infinity and satisfies [ g(x)*dz = 1 (just 1/3/2/ cosh(Bx)
and its shifts). On the other hand, the Euler equation of the discrete problem,
namely

4Bg(a)’ + Ag(x) = Ag (x) (2.12)

subject to 3" g(x)? = 1 (we have replace p(x) by g(z)?) has countably many
such solutions. A is the discrete Laplacian. I have no formal proof of this, but
playing on the computer one “sees” them, and it is probably not difficult to
prove it. (Computer simulations however indicate that among these solution
there are just two candidates as maximizers. Both are symmetric, although
we don’t have a proof that the maximizers have to be symmetric.). Anyway,
one easily gets convinced that (2.12) is a much more delicate equation than
(2.11), and even more so the discrete variational problem.

It is not difficult to see that one has uniqueness if 3 is large enough. This is
just coming from the fact that for “4 = 00”, the solutions are unique modulo
shifts, namely just the J,. By a perturbation argument around § = oo one
can prove that uniqueness persists for large (:
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Proposition 2.26. If 8 > 2d then
Kg={byp:z¢ Zd}

for some p € MF(Z), where 0, : M (Z¥) =M (Z9) is the usual shift
O2pu(y) = ply — ).

This is Proposition 1.19 of [14]. I will not repeat the proof here. There is
actually nothing special about 2d. The proof allows for slightly lower values
of 3. (The proof in [14] can actually be simplified somewhat, if one is satisfied
with a statement “for large enough 5 ...”.)

In view of the Proposition 2.18, it is natural to conjecture that for 5 >
Ber(d), one has that ]ADTﬂ behaves for large T" such that 7 is close to some
element in K 3. This is in fact true (see Proposition 2.35 below). What makes
things delicate is that K3 contains infinitely many elements. It will turn out
that there are infinitely many elements of Kg which will get positive limiting
weight under pTl;l. In the case where one has uniqueness modulo shifts,
we will actually prove that all elements of Kg get positive weight. However,
for 1 € K which lie for out, these weight will be small, uniformly in 7. A
preformulation of the main result on this collapsed phase is the following:

Theorem 2.27. Assume b(3) > 0. Then

5 -1 g A g (d
a) (PT,g 7 )T>O is tight in M7 (M7 (Z%)).
b) There exists ¢(8) > 0 such that

sup/exp [¢(8) |lwrll] dPr.s < oc.
T

c) If there is uniqueness modulo shift, then
. A -1 . A~ 1 . A~
A Proli’s Jim Prowr' and Jim Fro
exist.

The exact formulation of the limits needs a bit of preparation, and we
will give it later. limp_ o Pr .3 is understood in the sense of weak conver-
gence on the path space. In particular, it does not imply the existence of
im0 PT ¥ wT which has to be treated separately. The latter is the more
interesting object. The existence of the limit means that there is no rescaling
for wr, so that this random variable stays stochastically bounded under PT, 8
as T' — oo.

It is natural to conjecture that for 8 < (e, PT,[; just behaves diffusively,
but there is no full proof of that. What Brydges and Slade in [24] proved is
that for d > 2 there exists 3,(d) < B.r(d) such that for 3 < G,(d) there is
diffusive behavior (with some complications for d = 2). It could actually well
be that the §,(d) they define is exactly (.,(d), but I don’t know how to prove
this. We will threat the diffusive behavior in the next section. In Section 2.4,
we will then come to the large 3 i.e. collapsed case.
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2.3 The diffusive phase for self-attracting random walks

I am presenting part of the arguments in [24] for the existence of a diffusive
phase for dimensions d > 2. The two dimensional case is the most interesting
one, and it is related to the topics discussed in Chapter 1. I give a detailed
discussion of the case d > 3, and will add some comments about the two-
dimensional case. For abbreviation, we set

[V 2
=g [ [ st =Tl
0 0

Let ps(y) be the transition probabilities for our random walk. Then one
has the estimates

Po(y) < Cmin [1,]s| /2] exp[~y|/C] (2.13)

and -
Gly) / pe(y)ds < Cmin (jy| =2, 1) (2.14)
0

for d > 3. ((2.13) is actually very crude, but it suffices for our purpose).

Lemma 2.28. Assume d > 3.

a) There ezists Bo(d) > 0 such that

sup FE (exp [Bvyr]) < 00
T>0

for B < Bo.
b) E(yr — Evr)? = o(1) as T — .

Proof. a) By Jensen’s inequality, we have

exp [By7]

1 0o ﬁn T n+1
< Z lr(y) exp [BTlr(y)] = T Z Z o (/0 d31ws—y>
1 - n
— 23> ) |

1 dsy...ds .
< < {wsi =y, =y} T il
y n=0 0<s51<...<8p41<T

Therefore,
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E (exp [B7r])

1
<= ﬁ”n+1/ Psy (Y)Pss—5,(0) - Ps,piy—s, (0
=D IPBNAl SR L SSSORE O

= — ﬂ”n—Fl/ Dsy—s,(0) ... Ds, 1 —s, (0
LAl SR O R SO

<3 8" (n+1)G(0)",

n=0

which is finite if 3 < G(0)~!. This proves a)
In order to prove b), remark first that

2 T T
Byr = Z /0 ds / dt po(y)pi—s(0)

T T
_ %/O ds/ dt pr_y(0) = 2G(0) + o(1).

Therefore, we have to prove

E (v3) = 4G(0)* + o(1).
, 4

Yr = ﬁ / dSl dtl / d82 dtQ ]‘Wsl:th 1ws2 =wi, -
0<s:1<t1 <T 0<52<t2<T

When calculating the expectation, we have to distinguish between the cases

where the two intervals [s1, ¢1] and [sa, t2], are disjoint, one contains the other,

and when they nontrivially overlap, respectively. The first one is the main

contribution:
8

T2 /
0<s51<t1<859<to<T

It is readily checked that the other contributions are negligible:

dsy dt1 dso dts Pt1—so (0)]),52_32 (O) = 4G(0)2 + 0(1)

def 1
= 7
0<s1<s2<t2<t1<T
def 1 /
- 72
T 0<s1<s2<t1<ta<T

‘We check this for the last case.

R1 (T) dSl dt1 dSQ dtQE (1w51=wt1 1w52 =wz2) = 0(1)

RQ (T) dSl dtl d82 dth (1w51:wt1 1ws2 :wtz) = 0(1).

1
R2 (T) = 72 Z/ dSl dtl dSQ dt2 p52—81 (y)pt1—32 (y)ptz—t1 (y)
T2 S Jossi<sa<ti<ta<T
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For d > 4, we can estimate the r.h.s. by (1/T) >, G(y)* = O(1/T), but for
d = 3, this is divergent, and one has to argue slightly more carefully. Using
(2.13), one gets

RyT) < (/OTps<y>ds>3 <3 min (wlg,exp [cyH)

This proves the Lemma.
With this Lemma, one now easily gets the following result:

Theorem 2.29. Assume d > 3 and § < B,(d). Then, using Brownian scal-
ing,
pr(w)(t) € w(tT)/VT, w € D ([0,00),RY)
one has .
Jim Prgppt = Po,

weakly, where Py, is the standard Wiener measure.

Proof. This is immediate from the estimates in the Lemma 2.28: Let & :
D ([0, 00),R?) — R be continuous and bounded. Then

: > -1\ _ 1 feXP[ﬁW’T]@OPT) apP
Jim [ @d (Proprt) = tim S TR

i L 218G = EGr))) (@0 pr) dP

T—o  [exp[B(yr — E(yr))] dP
= lim (Popr)dP = /@dPoo.

T—00

The third equality is coming from the fact that v — Er(~yr) converges to 0
in probability according the Lemma 2.28 b), and the necessary exponential
moment estimate are from Lemma a).

Remark 2.30. Tt is also not difficult to prove that one has convergence of all
moments of finite dimensional distributions (see [24]).

The two dimensional case is more delicate and the limiting measure is
more interesting. I will give only some short comments about this case.
We step back to the discussion of Chapter 1. There we had argued the for
d = 2,3, the (formal) rescaling property of the polymer measure dﬁ’;’oﬁly "=
exp [~BJo 1] dPViener /Z which is
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P b = PG,

indicates that the self-repellent random walk with coupling parameter
BT~(4=4/2 ghould converge, after a Brownian scaling, toward the polymer
measure with coupling parameter 3. This is the content of Theorem 2.29
for d = 3 and has been proved for d = 2 by Stoll [69]. The renormalization
needed to define the two dimensional polymer measure is just the subtrac-
tion of the logarithmically divergent loop diagram, i.e. just by subtracting
the expectation. This is an old result of Varadhan [75] who proved (with a
different regularization) that

Yr = &11_13% (Jo.r — EJ5 r)

exists in Ly, and Eexp [-0Yr] < oo for all § > 0. The polymer measure for
d = 2 is therefore just

dPpo"™ = exp [ Y] dPVierer /7,

Somewhat surprisingly, Y7 has also a positive exponential moment, as has
been proved by LeGall:

Proposition 2.31. ([48]) There exists 5,(2) > 0 such that
E (exp [BY1]) < o0

for B < B,(2).

Therefore, the polymer measure exists (for d = 2 not for d = 3) also with
the “wrong sign” if § is small. This makes it plausible that Stoll’s result stays
correct also in the attractive case. This is in fact true and is the content of
the following result by Brydges and Slade:

Theorem 2.32. Assume d = 2. Then there exists $,(2) > 0 such that for
0<B<5(2)

a) Suprg E™Y exp (B (vr 1* Evr)] < o0
! . PP 8
¢) limy o0 Prgpr’ = Pp%%

I will not give the details. There are a number of interesting observations:

e The renormalization is necessary. Evidently EXW exp [3yr] — oo for 8 > 0,
simply because yr — oo in probability.

e In contrast to the situation for d > 3, the limit in the two dimensional case
depends on (.
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2.4 The collapsed phase for self-attracting random walks

In this section, we will discuss some aspects of Theorem 2.27. We will focus
on the limiting behavior of PTlgl, from which actually the other properties
can be derived. Therefore, we assume d = 1 or d > 2 and § > (. (d). To
simplify matters, we will also stick to the case where the variational problem
(2.2) has a unique maximizer, which makes things technically a bit simpler.
In that case, we can give a more precise version of the theorem, identifying
the limit, which we had not been able to do in the case where one has non-
uniqueness. For the rest of this section, we therefore assume

Condition 2.33. Kz = {Hmuo rx € Zd} for some p,.

This especially applies to 8 > 2d, but it may well always be true. The
proof given here incorporates some technical simplifications compared with
the one given in [14] which make it more transparent (I hope).

Theorem 2.34. Assume b(8) > 0 and Condition 2.33. Then

a) Tll_Igo PTl;l = Z V o (—2)00, 1, Z V ko (2)

rcZd r€Z4
b) lim PrX;!= E(\/;To* \/ﬁ»)/w%d (\e//T* Viio) (@),
def

where fio (r) = pio (=)

It is also not difficult to determine limp_, oo PT itself which turns out
to be a mixture of ergodic Markov processes. This is in spirit very close to
Proposition 2.18. T will give some more comments later.

Remark that the choice of p,, which is of cause arbitrary in Kg does not
influence the right-hand side of the above equations.

The proof of the theorem splits into three parts, which will be presented
in the subsections, but I will concentrate on the probabilistic aspects.

A crucial first step is to prove that under PT, the local times I concen-
trates with high probability to a neighborhood of K. We had coined this
the “tube property”, because K in the case of uniqueness and d = 1 is a sort
of an infinite line, so a neighborhood looks like a tube.

On M (Z%) we take the total variation norm |||, which can be taken
as the metric for the weak convergence (as Z< is countable). If A is a subset
of M7 (Z?), then we write U.(A) for the e-neighborhood in total variation of
A. So the statement is

Proposition 2.35. For anye >0

Am Prg(lr ¢ U.(Kg)) = 0.
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Remark 2.36. The proof will actually show that for any positive €, the prob-
ability Pr g(lr ¢ U-(Kg)) decays exponentially in T

Even after having proved this “tube property” the path measure could
still float around very freely. The next and crucial step is the proof that this
does not happen.

Proposition 2.37. For any n > 0 there exists S(n) € N such that for all
e>0

lim sup Prg(Ir ¢ U ({00 : |2] < S()})) <.
—00

From this tightness property, the convergence follows as will explained in
subsection 2.4.3.

2.4.1 The tube property: Proof of Proposition 2.35

It is quite evident that Proposition 2.35 should be true, but there is a very
annoying problem to prove it. First observe that

E (Lipgv exp [8T iz 3] )

M = (e [ el

For the estimation of the numerator, we define F' : M (Z%) — [~oc, 00) by
F(u) = ||/,L||§ if u ¢ U and F(u) = —oo otherwise. As F' is upper semicontin-
uous, we would expect to get

1 1
lim sup 7; log (11T¢U exp [BT ||lT||§D = lim sup 7 log £ (exp [BTF(Ir)])
<sup {BF(p) — ()}
2
= sup {ﬁ el = I(M)}

The right hand side of this is evidently strictly smaller than b(3), so this
would prove the claim. The above inequality is however not quite evident
because we only have a weak LDP at our disposal. We can try to remedy the
situation by using a compactification argument, i.e. wind the random walk
on the torus in the same way as we did in the proof of Proposition 2.23.
The problem is that in our situation, the monotonicity argument does not
work out such nicely. We would like to argue as follows: Fix some (large)
R € N and consider again the wound up random walk on the torus T =
{0,...,R— l}d . Denote the corresponding set of solutions of the variational

problem by K = {u e M (Tr) : Blulls — IR () = bR(ﬁ)}. For a given
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neighborhood U, of K we would like to find ¢’ > 0 such that for any large
enough R

Lipgu. ) exD [BlErl3] < Lipgor aemy exp |8 1]3] (2.15)

in which case we would get the desired inequality, by estimating

. 1 R 2 2 R
Jim_—log £ (1l¥¢UE/(KR) exp [ﬁ HlTHQD < L (ﬁ lplly — 1 (M))

KR)

which is easily seen to be < b(f) if R is large enough. However, (2.15) is not
quite correct, as evidently there are probability measures which on the full
space are far away from K, but which become close when wound up. On the
other hand, it should be clear that such measures must be somewhat weird,
and one should be able to control the event where (2.15) fails separately. This
is indeed the case.

The proof is based on a reflection trick. Let i € N*,1 < m < d and
consider the space of paths Dr (right continuous pure jump) of length 7. We
define a reflection ¢, ;(w) of paths w € Dr at the hyperplane

Hm,i

def (. . . ) . . . . _
= {(21,...,zm_l,z,zm+1,...,zd):(11,...,zm_l,zm+1,...,zd)eZd 1}

simply by switching any excursion which moves strictly to the right of the
hyperplane to the left. By the “right of the hyperplane”, we mean the half-
space of points whose m-th coordinates are > i, and accordingly for the left.
Remark that we start left of the hyperplane as we assume ¢ > 0. Therefore,
after the switching, the path is at the left of the hyperplane, or on it. It is
easy to estimate the density of PT‘P;LZ- with respect to Pr. Let ny;(w) be
the number of times, the path visits the plane, coming from outside it. Then

Lemma 2.38. dPTQD;:i/dPT < gnri,

This is fairly evident, and we leave it as an exercise to prove it. The
switching costs at most a factor 2 “in entropy” for every visit of the plane
(see [14]).

One important and easy property we are using is that “finite size” ap-
proximations of the variational problem are approximating the infinite one
very well. For a proof of the following Lemma we also refer the reader to [14].

Lemma 2.39. a) limp_, o, b (3) = b(B).

b) K& is close to K in the following sense: For any € > 0 there ezists R,(¢)
such that for any R > R, one has

bl) For any p € K, the wound up measure uf' measure on the torus Tg is
within e—distance of some v € K.
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b2) For any v € K one can cut the torus open in such a way (i.e. identify
it with the subset {1,..., R}¢ C Z% such that if v is extended by 0 to the
whole of Z%, it is within distance less than € to K.

The Lemma states that analytically, the tube property holds, and we
have to prove the probabilistic counterpart. We first state an immediate con-
sequence of the above Lemma 2.39 and the strong LDP on the finite torus.

Lemma 2.40. Given € > 0, there exists 6(¢) > 0 such that for all R large
enough
lim sup 1 log Pr (I} ¢ U.(K™)) < =4(e).
T—o0 T

Remark that at this stage, no uniformity in R of the estimates for
Pr (ZTE ¢ U (K R)) is claimed. To prove such an uniformity is essentially the
task we have in order to finish the proof of Proposition 2.35.

The idea is as follows: Take R > 1. Assume we are having a path such
that I7(w) is not close to K. We however know from Lemma 2.40 that I lies
with large If’T—probability close to K. By Lemma 2.39, for large enough R,
K looks much like the translates on the torus of our basic u, € K (some-
what chopped to fit it onto the torus). Therefore our path, except with very
small PT—probability, has to distribute its Ir—mass on several essentially
disjoint translates of u,. The problem is of course that this may happen on
an increasing number, with growing 7', which looks at first glance difficult
to control. Nevertheless, between these chunks of translates of p, on which
7 is sitting, there must be vast regions essentially not visited. We select a
hyperplane H,, ; which is not often visited. Then the reflected path has es-
sentially the same probability as the old one (not quite, of course, but this is
measured by Lemma 2.38). As we have enough “empty” space, we can choose
the hyperplane in such a way that after the reflection 7 (¢, i(w)) is not close
to K ®. Therefore, such a behavior of w is excluded by Lemma, 2.40.

As there are several things which have to tally, we give the details.

If 6 > 0 is small enough, we have by our Condition 2.33

Us(K) = U Us(0110),

A

and similarly on the torus. Of course, we cannot conclude that K consists
of shifts of one element, and for u € K, it will not be true that uf* € K.
However, if § > 0 is small enough and R sufficiently large, R > R (), one
has
Us (K%) c | Uas (6r1ed)
kETR

as follows immediately from Lemma 2.39. Therefore, if £,§ > 0 are small
enough we have



2.4 The collapsed phase for self-attracting random walks 59

Pr (I} € U(K™), 17 ¢ Us(K))

< Pr < U (i et} in ¢ UU5(913M0)> (2.16)

keTr 4

< Z Pr (lIT% € U(Oxpl), Iy ¢ UU6(92N0)> .
¢

keTr

We claim that if ¢ < ¢,(0) (small enough) and R > R,(g,0) (large enough)
then for any

pé | JUs(0upo) (2.17)
‘

with

p € Une (O pil) (2.18)
there exists a hyperplane H,,; with 0 < ¢ < R, 1 < m < d such that
(fim)" & Usjaa(KR), |l fom.alls = lulls| < 3¢ and p(Hoi) < 3¢, where jin,i
is the measure where the mass right of the hyperplane H,, ; is reflected to the
left To see this, remark that for any e > 0, if (2.18) is satisfied, and R is large
enough, then p must, by Proposition 2.25, be concentrated up to a mass 3¢
on R-periodic shifts of boxes of side length L (¢) . Of course, if just one L-box
is needed, and ¢ is small enough compared with §, then (2.17) cannot be
satisfied. Therefore, from this property it follows that for £ < £,(9), a single
L-box contains at most 1 — 95/10 of the p-mass. This holds true uniformly
in R (large enough). It is geometrically evident that by choosing & > 0 small
enough and then R > R,(e,0), we can find a hyperplane H,,; having the
following three properties

e H,, ; does not intersect any of the L-boxes.

e The L-boxes on the right of H,, ; when reflected to the left, do not intersect
the L-boxes on the left.

e The right side and the left side of the hyperplane contain at least 6/3d of
the mass of p.

From these three properties, it is evident that H,, ; does the job. Let A, ; (¢)
be the event that the Hamiltonian of the reflected path does not deviate more
than 3¢ from the unreflected, i.e.

def 2 2
A @) L i 0 omally — i3] < 3¢}
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I plane of reflection

reflected path

Fig. 2.1.
Then we have
{z¥ e U(0pplt), 11 ¢ UUC;(amO)} (2.19)
‘
C U { lTOQOmi ¢ U6/4d(KR)7 Amz (6)7 lT(Hm,i) S 35}7
0<i<R
1<m<d
implying

PT <l,11§ S UE(KR), It ¢ UU5(9€U0)>

£

0<i<R
1<m<d

<RPr | U {roemd) € UspaaK"), A (€), 1o (H:) < 35})

(2.20)
< Rd+1 max PT ((lT o (pm’i)R ¢ U6/4d(KR)a Am,i (5)

0<i<R
1<m<d

We would like to replace the condition I7(H;) < 3¢ by a condition on np ;.
This can be done by still adjusting the €. By Lemma 2.41 below it follows
that for any € > 0 one has for £ > 0 small enough (depending on &)

P(lp(H;) <3e,np; >ET) <exp[—(8+ 1)T], (2.21)
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and therefore R
Pr(Ip(H;) <e,np; >ET) <exp[-T].

For fixed £, and 4, we can choose £,(£,d) such that for £ < &, the above
inequality is true. We can therefore replace the condition Ir(H;) < 3¢ in
(2.20) by nr,; < €T, making a negligible error. Next, we estimate

Pr ((lT o pmi) ¢ Usjaa(K"™), A (g), nr; < éT)

1
< 7E (eﬁTl\lTllﬁ; (It 0 omi)" ¢ Usjaa(K™), A (€), nryi < éT)
T
e3ﬂaT 5 R
< ?E (eﬁTl\lTosz; (ZT ° @m,i) ¢ U5/4d(KR), nrg < éT)
T
e3ﬁsT 5
< 7 E (QnT’ieﬁTHlT“2§ 1 ¢ Usjaa(K"), np; < éT)
T

< MWl Pr (1R ¢ Uy jo(KT))

Therefore, for given (3,9 > 0 we choose € small enough such that the decay
of P (ZZFE ¢ U5/4d(KR)) which is guaranteed by Lemma 2.40 beats e*?¢7 27T
and then for ¢ < ¢,(0,0), and then R large enough, one gets the desired
estimate for Pr (Ig ¢ Us(K)), which finishes the proof of Proposition 2.35.

Lemma 2.41. If(;, 1 > 1, is a sequence of exponentially distributed random
variables, with parameter 1, then fort <1

P <Z G < mf) < exp[—nh(t)],

i=1
where
lim A(t) = —oo.
t—0

Proof. This is the standard one dimensional large deviation estimate. The
rate function is

- 1
h(t) = sup (/\t - 10g/ exp[Ar — a:]dx) =t—1+log-.
A<0 0 t

2.4.2 Tightness: Proof of Proposition 2.37

This is the crucial step of the whole argument. It should be noted that the
different places in Kz cannot be distinguished on a logarithmic scale. In fact,
it is rather evident that
log & (exp {BT ||lT||§] s lr € Us(uz)>
lim

T—o0 log ZTﬁ

=1




62 2 Self-attracting random walks

for all z € Z%, ¢ > 0. The most natural way to proceed would be an evaluation
of the expression P (I € U.(ug)) up to a factor (1+0(1)), and the same
for Zp g. In that case we could control the quotients. This would probably
be possible but has not been done in the present context, and is probably
technically delicate. We instead make use of the symmetry properties.

Before we start with the formal proof, I want to explain shortly the main
idea. We want to conclude that under PT, there is only a small probability
that Ip ~ pg,  far away from 0. To do this, it suffices to get estimates for
large |z| of

Priin ~ ) B (exp [BT 3]s i ~ o)
Pr(r~po) B (oxp [BT i )2] s 1~ o)

of course only in the 7" — oo limit. As already remarked, a way to control
this would be to evaluate the numerator and the denominator up to a factor
(140(1)), as T — oo. There is however a much easier way to get such a
control, which in spirit resembles the Peierls argument for the Ising model.
If Iy ~ pg, || large, then the path spends most of the time near . It is not
difficult to prove that the path has to reach the neighborhood of z relatively
quickly, say after time ¢t < T, where however ¢ has to become large when ||
is large. We are doing now a splitting of the local time in the part before time
t and after that. If we calculate ||lT||§, we now want to split this, too, and
we use that the path before ¢ has not much intersection with the path after
t, the latter hanging around x, whereas the former doesn’t. We compare that
now with the situation where the path after ¢ would hang around 0 instead
of around x. We just shift any path after time ¢ which hangs around = by
—x. Of course, we have to fit the path before ¢ to this situation.

shifted path from ¢ to T’
~.

Fig. 2.2.
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The crucial point is that the shifting of the main part, namely the path
in [t,T] does not cost anything, due to the shift invariance which is used
heavily. Lets denote the local time after the shift by M. The only thing

which essentially distinguishes ||ZT||§ from ||lSThiftH§ is that the former has
essentially no contribution from the interaction between the path on [0,¢]
with the path on [t,T], where the latter has. It turns out that typically

15512 ~ i )12 + Ct.

Therefore, we get
E (e 20 <e ¢t E
Xp ﬁT”lTHQ ) lT ~Hy) S € E exp ﬂT”lTHQ 3 lT ~ o |,

uniformly in T large. On the other hand, |x| cannot be large without ¢, the
first time, the path reaches the neighborhood of z, is not also large. Therefore,
it follows, that I ~ p, can happen only with small Pp probability, uniformly
in T for T large. Of course, this is very hand-waiving, and we now give the
details of the argument.

We are proving a superficially weaker result than Proposition 2.37:

Proposition 2.42. There exists €, > 0 such that for all e < e,,mn > 0 there
exist S(e,n) € N, To(e,n) > 0 with

el U et <
|z|>S(e,m)

for T > T,(e,n), where p, def O tho-

Together with the Proposition 2.35, this evidently implies the Proposi-
tion 2.37.

Perhaps some comments on the role of € in our proof is in order, in
particular as this point had been not so well handled in the original paper
[14]. We will on several occasions switch from one € to another. As the tube
property 2.35 states that outside any of any e-neighborhoods of K there is
only (exponentially) negligible Pr-mass, we can do this freely, always after
having chosen T large enough. As the T — oo limit will always be the first
to perform, this causes no problem.

Ifr €N, let C, {-r,—r+1,...,r}¥ and for x € Z%, C,.(z) = C, + .
0C,(x) is the inner boundary, i.e.

0C,(x) ={y € C.(z) : |y; — x;] = r forsome i} .

We denote by 7,.(x) the first hitting time of 0C,(z) and by &.(x) the time
the process spends on 9C,.(z) after 7,.(x) before leaving it for the first time.
We need some control that the process does not leave 9C,.(x) too quickly.
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Lemma 2.43.

uniformly in T,r, x.
Proof. Define
_ wy fort<r
Yilw) = {wt+5 fort > 71~

Then {Y;},., and &, are independent under P. Let I7.(x) = (1/7) foT Liv,—a}-
Then

23 — 12| < €5 (222)
Therefore,
E (exp [0T i3] 1€ < p) < CBE (exp [0T 15 13] 16 < o)
< CBpE (eXp [ﬁT ||l/TH;} 13 1)
< CppE (exp [T i3] )
This proves the claim.

We need a further technical Lemma:

Lemma 2.44. Given n > 0, there exists r,(n) such that

sup ZPT 7-(0) < V7)) <.

T>1
r=ro(n)

Proof. We introduce for ¢t < T :

def 1 r
lt,T(y) = 7/ 1Xu:y du.
t

Then, as above in (2.22), we have

[Tl = Tl s el < VP
Therefore

B (explT8 iz |37, < V7)< V7B (explTB|1 s 1y 12) P (7 < V)
= eV Zr P (1, < V7).

If the random walk reaches C,.(0) in time < /r, it has to make at least r
jumps in this time. Applying now Lemma 2.41, the claim follows.
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Given ¢, let £(g) be chosen such that ,uo(Cl?(E)) < . The main step in the
proof of Proposition 2.42 is given by the following result:

Lemma 2.45. Ife > 0 is small enough, there exists A(e) > 0, such that for
x with |x|,T,u > A(e) and p € (0,1]

Pr (lT S UE(M:D)7€Z(6)('7;) > P, TZ(E)(x) ) <

E\Q

xp[-u/C],  (2.23)

(C may depend on B and d but on nothing else, as usual).

Proof. We abbreviate &.y(x) as £, and 7y(.)(z) as 7 during this proof. A(e) is
chosen in any case bigger than £(c). Then 0 is outside By.)(z). Remark first
that for x| > £(¢) and I7 € U (u.), the process can spend outside of Cy( ()
only a total time less than a proportion of €T. Therefore, on {iz € U (uz)}
we have T< T <T

if € is small enough. (We remind the reader that c;, ¢, ... are constants not
changed after having them introduced). Therefore

E (GBTHZTHg, lT € Ur—:(//’/:v)7 5 > P, U < T)

<FE (eﬂT”lT”g; lp €Uc(piz), E>p,u<7< clsT.) (2.24)
1 c1eT+p
s;/ th(eﬁT“lT”g;lTeUs(ux),€>p,t—p<r§t)
u
1 creT+1
< 7/ dt B (#1171 17 € Uy, X, € 00y (x), t 1< 7)),
P Ju

where in the last inequality we have used that on theset {t — p < 7 <¢,& > p}
we have X; € 0Cy(.)(x). We can assume that c;e7' +1 < T, so that ¢ < T in
the domain of integration.

We have the cgnvex conzbmatﬁn Ir=4+ Tl +

: tlf .7, and therefore
T |5 = f”lt”z 1L, T||2+2

(TT D (e, L) - (2.25)

T

If A(e) > 1/e, we have eT' < 1 for T > A(e) and therefore ¢ < CeT if
t < c1eT + 1. Therefore

t2
T 11e]|5 < CeT, (2.26)

if € < 1, which we of cause assume. We now estimate the third summand in
(2.25). First observe that

||lt,T — ZTHTV S t/T S CE,

and therefore
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lyr € Ueye () (2.27)
if iy € Ue (uz), and we can conclude
[(les beyr)| < (s pa)| + Ce.

Now, ;1 does not charge Cj( (z) if t — 1 < 7, and as p, (Cy(o) (2)°) < e,
we conclude

(s pra)| < (-1 )| + [l = Lellpy < C,

ift>u>A(e), A(e) > 1/e. Therefore, on {ly € U (1), t —1 < 7}, and

the region we are considering, we have

HT —t)
T

‘2 <lt, lt,T> S Ce (228)

Implementing (2.26), (2.28) and (2.27) into (2.24), we get

E (eﬁT“lT”g;lT € Us(pz), &> pyu < T) (2.29)
1 creT+1 (T—1)? R
< ;/ dteCPtE (eﬂ o Merllz; gy 7€ Uy (i), Xo € 60@(5)(@) :

We next claim that for y € 9C)(x)

(T —t)?

E, (eﬁT\IlTHg ft,T) > exp |:Cgt + ﬂT ||lt,T||§] (2.30)

on {lyr € Ugye(piz), Xy =y}, where Fyp is the o-field generated by X,
t < s < T. Before proving this, we show that (2.29) and (2.30) imply the
Proposition 2.42.

Fir))

> Y B (B (T Fir) sl € Unse (), Xo =)
yeacl(s)(z)

> 3 pe(2,y) (Ez (eﬁTwTu%
Dt (05 y)
y€0Cy () ()

Zry = E, (Ex (eﬁTuzTn%

Fir)s b € Usse(ia), Xo =) -

Remark that if A (¢) is large enough, we have p; (x,y) /p: (0,y) > 1 for all
y € 0Cy)(x) and t > A(e), if |x| > A (e). Therefore,

(T —t)?
7|

Zpg > Z E (exp |:C3t + 4

yeac@(s) (I)

=e%'E (exp {ﬁ

zt,Tn;] o € Un (1), X — y>

T —1t)?
EF ] s i € Uactine) X1 € 000 @)
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Therefore, by (2.29),
B (T by € U (1), €0y > pou < 7)

1eT+1
< ZT,B /C = e—cyﬁ-{-Ceﬁt dt < CZT;/@ e—Cu’
P Ju p
provided € < g9 () . This proves Proposition 2.42.

It remains to prove (2.30). On the prescribed event, the left hand side of
(2.30) is

T —¢)?
> exp [5(71) ||ltT||§:| E, (e2tﬁ<lt,uz>

X = y) e Cet,

We make a transformation of the path measure switching to the measure
PY) of a Markov process starting in « having @-matrix

<; M(j)/ux(j))i,jezd'
(1)

P, is absolutely continuous on (D;, F;) with respect to Py’ with a density

P, W) = o () ‘ 1Avﬂx (ws) (2.31)
dPx(ML) Mm (wt) 0 \V4 ,U/aj ws

where A is the discrete Laplacian Af(z) = 32, ., 11 (f(y) — f(2)). (see
g. [63], Chapter IV.3). We write now u,(z) = g*(x). g satisfies the Euler

equation
48g(x)® + Ag(z) = Ag(x). (2.32)

Multiplying with g(z) and summing over x gives

—4ﬂ2g Y- 2I(g?) > 2b(3) > 0.

On the other hand, if we divide 2.32 by g(z), we get

t IA /,Uo
0 \/No WG

The same is of course true if we replace u, by p,. Implementing this into
(2.31), implies

) ds + 28Iy, o) = A

E, (e2t<ltvﬂz>

X, = y) > E, (e2t<ltv“w>; X, = y) (2.33)
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(0
— oM/2 10 (0) Pa(:uac)(Xt =1).
to(y — )

(Xt)t20 under ng“ =) i ergodic with stationary measure u,. Therefore
i (ba) — ) =
Jm P (X = y) = e (y).-
Therefore, there exists t, (¢) > 0 such that for t > ¢, (¢) ,and ally € 9Cy(. ()

E, <62t<ltvﬂw>

Xt = y) Z ekt/37

Therefore, we only have to choose A(e) > t,(¢). This proves (2.30).

The Lemmas 2.43, 2.44 and 2.45 now imply Proposition 2.42 in the fol-
lowing way. Given n > 0, we first choose p (1) > 0 according to Lemma 2.43
such that

Pr (& () < p(n) <n/3 (2.:34)
for all T, x, r. Then we choose 1, (1/3) according to Lemma 2.44, so that
Pr (- (0) < y/rforsomer > r, (n/3)) < n/3. (2.35)

If ¢ > 0 is given, we choose u(g,n) € N, u(e,n) > max (A (€),7o (77/3)2)
such that

s explu(en) /) < uf3
(C here from Lemma 2.45). If now
2| > S (e,7) < max (A () +1(e),u (6,7])2>

then on the complement of the event in (2.35), one has 7y () > 7. 2 (0)
and therefore, according to Lemma 2.45, we have

Pr (lT € Uc(pz), §o(e) () > p(n) , Toeey () > u (E,n)) <n/3. (2.36)

Combining (2.34),(2.35) and (2.36) we get the statement of Proposition 2.42.
In the next section we will need a result which can be proved by a exten-
sion of the above argument:

Proposition 2.46. lim,, o limsupr_, . supg<;<r Pr (|X¢| =m) =0.

We will not give a proof here which is essentially a repetition of the
arguments above. Remark that the supremum over ¢ is outside. The proof of
Proposition 2.37 given above shows that 7 must have its main weight, up to
small probability, close to the starting point. The argument essentially is that
if it would be far out, then the path would need some time to reach this place,
which would be bad for the Hamiltonian. Completely similar arguments show
that uniformly in ¢t we can estimate the probability that the path is at time ¢
far out, just because the path would have to go out from the main bulk out
to this place and come back, which again would be bad for the Hamiltonian.
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2.4.3 Proof of Theorem 2.34

For small enough € > 0, the U.(u,), z € Z%, are all disjoint. We also know
from Proposition 2.37 and Proposition 2.46 that for any n > 0 there exist
S(n) and m(n) > 0 (not depending on ¢ !) such that for T' > T,(e,n) one has

sup Pr | lr e | Uelua), |Xe| <m(n) | 21—
=T z:|<S(n)

Of course, we can assume S(n) < m(n). We want to prove that for all z € Z¢

lim Pr (ir € Us (1)) = Y1 =2) (2.37)

T—o0 Y, Vi)

for all small enough ¢, i.e. € < g,, €, depending on nothing except d and .
Remark that p,(—x) = p, (0). From Proposition 2.37 we see that in order
to prove (2.37) it suffices to prove that for any x, we have

Pr(lr € Ue(pz)) _ /12(0) (2.38)

im —

T—oo Pr(lr € Ue(po)) #o(0)
Given Proposition 2.35, this proves Theorem 2.34, part a). We therefore fix
x and take n > 0 such that |z| < S(n) < m(n). We will later on choose
some ¢t = t(n), which will not depend on ¢ (provided always that ¢ is small
enough). We use again the splitting

(T —t)? 2, LHUT 1)
T lle,ll5 +2 7

If T, (¢,7) is chosen large enough (after ¢t = ¢ () is chosen), we have the first
summand O (n) and replacing the numerator 7' — ¢ in the third summand by
T causes an error of the same size. Therefore,

Pr (I € Us(ptz))

= Pr (I € Ue(pa), |Xe| < m(n) + O(n) (2.39)

1 —t)?
_ ?E <62t<lt,lt,T>+(TTf) Hlt,T”g; Ir € Uc(pie), | X¢| < m(ﬁ)) +O(n).
T

ot 2
T|irlly = T ll2ell5 +

<lt7 lt,T> .

We want to make some further replacements. Remark that if T > T, (g,7)
and T, (¢,m) is appropriate, we have {l7 € U./2(p2)} C {le,r € Us(pa)} C
{lr € Us:(pz)}, and by our tube property, we get

Jim [Pr(ir € Use(12)) = Pr (ir € Uspa(pea) | = 0.
Therefore, we can replace Iy € Ug () in (2.39) by I v € Uc (), making an
additional error O (1) . Next, we replace l; 1 in (I, ;) by ft,, which causes
an error in the exponent of order te. Summarizing, we get for et <1
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Pr(ir € Us(pa))

1 2t (1 o)+ T2 11, 112
= _—F e\ T Tl I o€ Ue(pta), | Xe| < m(n)

Zr
x (140 (et)) + O(n)
= IR: (e”“t’”w”w'“f'i; 7 € Ue(pa), Xo = y)
T yifyl<m
x (140 (et))+ O(n)
= ZLT Z E (th(l”‘“ X = y)
y:ly|<m

< E, ( il 1y, Uemx)) (14 0(=)) + O(n).

The crucial point is that we can choose € depending on 7, and we do it in
such a way that et < 7, of course, after having chosen ¢ (n), which will be
done below. In this way, we can replace the error terms above by a summand
O (n), but we have then to take T' > T, (n,e). We explain now, how ¢t (n)
has to be chosen. We use the same transformation as in the last section (see
2.33) and get

x O x
/2 ngyg Pé“ '(Xi=y)

Px(Xt:y)

(S

E (e2t(lt,uz>

Xt:y):

If we let ¢t — o0, we get uniformly in |y| < 2m(n), P, (Xe=y) =
Ct=42(1+0(1)), and P\") (X, =y) = po () (14 0 (1)) . Therefore, if we
AF /24472 01 we get for t > t, (17, m)

put ¢ (1)
Xi=y) = ()i (0)Via) (1+ 0 ().

E (eztut,m
uniformly in |y| < 2m (n). Therefore, after having chosen m (7)), we choose
t (n) in this way, and then we have

PT (ZT € Us(”r))

< %;)\//T(O) Z \/mEy (e(TTt)2|th|§;th € UE(NI)) + 0(77)

y:ly|<m(n)

Remark now, that p,(y) = uo (y — ) and

_4)2 —1)2
E, (e(TT) lr—ell3. 1, € UE(M)) =E,_, <e<TT> lr—dll3. 1, € Ug(uo)) ,

As |z| <m(n), we therefore get for T' > T, (n,e (n)) :



2.4 The collapsed phase for self-attracting random walks 71

Pr (lT € Us(pta))
YV Y Vi, <e” ey € Vi) ) + O()
y:|ly|<2m
1 /. (0)
< — vV \/ o
\/7v|vlz<2m M
x B, <e( T L S Us(;“’o)) +0(n)
< VPO b0 e Un(ua), 1X4] < 2m(n) + O(n)
10(0)
< Zggi O (I € U (1)) + O(1).

The above conclusion is for € = & (1)) , where the latter has been chosen above,
but thanks to Proposition 2.35, we can switch back to a fixed £ > 0, small
enough, but not depending on 7, if T" is large enough. In conclusion, we get
for a fixed (small) €

limsup Pr (It € Us(p1z)) < #e(0) liminf Pr (Ip € Us(po)) -

T—00 TV o(0) T—oe

As the role of x and 0 are interchangeable in the argument, we get the desired
relation (2.38). Therefore, part a) of the Theorem 2.34.

I will not give the details of part b), as it is by some straightforward
modification and extension of the above argument. One has only to introduce
another splitting at a time point T'— ¢, to “separated” the endpoint from the
main bulk of the empirical distribution.

Remark 2.47. From the above proof, it is not difficult to guess what
limp_, o Pr is, still assuming uniqueness modulo shifts: It is just a mixing of
the Markovian processes Pé“”) which are the jump processes with Q-matrix

<; pia (5) / e (i)>i7jgzd,i#j.

The mixing is over x and is given by \/MI(O)/ >y V/ 11y(0). Therefore, the

limiting measure is not Markovian itself.

Remark 2.48. Some last remark about what happens if the Condition 2.33
would fail (a case where I don’t know if it occurs at all). In that case it
would be difficult to establish a limiting result and one would have to go into
finer asymptotics in large deviation in order to determine the relative weights
on the different fibres. This has not been done for the present problem (see



72 2 Self-attracting random walks

however [13] for the case of sums of i.i.d. random vectors). However, one can
easily get some information: The proof of the tightness essentially applies
with only small modifications, and one gets at least tightness for instance
of the distribution of the endpoint (and the relative distribution inside each
fibre of the Kj) without any further assumptions besides b(5) > 0. For the
details, I refer to [14].

2.5 A droplet construction for the Wiener sausage

A problem which is closely related to the one in the previous section is con-
nected with the classical large deviation result of Donsker and Varadhan for
the volume of the Wiener sausage [34]. There is a corresponding result for
random walks where the volume of the Wiener sausage is replaced by the
number of points visited. I will sketch some of the problems and results in
this section without going into technical details.

I stick for the moment to the Wiener sausage: So let 3;, t > 0, be the
standard Brownian motion on RY, starting in 0. The Wiener sausage is defined
by

Wit = Ba(8s),

s<T

where ¢ > 0 and where B,(x) is the ball with radius a and center xz. All
results generalize also to the situation where B, (z) is replace by z+ C where
C is an arbitrary compact set of positive capacity. The volume of the Wiener
sausage is then just its Lebesgue measure

Vi =Wzl

For a random walk (discrete time, say), the natural quantity is the number
of points Ny visited by the random walk up to time 7. It is known that for
d >3, EV} = Kk, T+ o(T), where s, is the Newtonian capacity of B, (see
[67]). For d = 2, one has EVi# ~ T/log T, and for d = 1, it is of course of order
VT. One is then interested in estimating the probability that V7 is smaller
than that. A possibility to measure that is to investigate E (exp [—8VF]),
6> 0.

This quantity appears in a number of problems, for instance in random
trapping problems. Consider a Poissonian point process with intensity g > 0
in R%. Around each point we put a ball of radius a > 0. These balls act as
traps. Independently of this point process, we consider a standard Brownian
motion. Define the trapping time 7 as the first encounter of the Brownian with
one of the traps. One is interested in P (7 > T'), i.e. the (small) probability
that no trapping occurs up to time 7. P here refers to the joint distribution
of the traps and the Brownian motion. To calculate it, we can integrate out
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the Poisson process first. Evidently, there is no trapping if no point of the
point process falls into an a-neighborhood of the path of the Brownian, i.e. if
the set W4 is trap free. The probability (under the point process) that this
happens is exp [-GV}] . Therefore

P(r>T)=FEexp[-pV7].

Here, on the right hand side, E refers to just taking Brownian expectation.
In random media, such a situation is called annealed. This refers to integrat-
ing out the trap configuration (the “random environment”) together with
the “random walk”, here the Brownian motion. In contrast to this, one can
consider the quenched situation. Here one would keep the environment, i.e.
the trap configuration fixed, and asks about P (7 > T') in the T — oo limit,
where P now refers only to the Brownian. This quantity now depends on the
realizations of the traps, so one should write P, (7 > T'), w referring to the
trap configurations, and one would then like to have the limiting behavior of
this as T"— o0, for almost all trap configurations. I will here entirely focus
on the annealed situation. A detailed study of the quenched situation is done
in [73].

Regarding F exp [—SV}], the classical result of Donsker-Varadhan states:

Theorem 2.49. For any 8 > 0

1
jlgﬂoo Td/(d+2) log E (exp [_5‘/7(“1]) = ¢(ﬁ)7

where

g d/(d+2) d+2
d 2’
wq being the volume of a ball of radius one and Ay is the ground state eigen-
value of the %A in the ball with radius one with Dirichlet boundary conditions.

B(B) = (waB)? I+ NI/ (@12)

There is a similar result for Ny in the random walk case (see [35]).

In order to understand the result and especially the somewhat strange
power of T appearing in this large deviation result, one has first to look at
the lower bound. One seeming very crude bound is obtained by confining the
Brownian motion inside a ball B,...(0) whose radius r7 has to be determined.
For such path the volume of the sausage certainly is not larger than the
volume of B,., 1,(0) which is wy(rz +a)?. On the other hand, it is well known
that

T
P(8s € By, s <T)>Cexp {—/\dTQ] )
T
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Therefore, we get for any choice of rp :

T
E (exp [-pV}]) > Cexp | —Pwa(rr + a)d — )\dr—z
T

Optimizing over 7y one finds that the optimal radius is

1/(d+2)
rr o~ Zg‘iz; 4f )(B)TY/(@+2) which gives the lower bound in Theo-

rem 2.49. The difficult part of the theorem is of course the upper bound. It
might look somewhat surprising that the above crude argument for the lower
bound gives the correct asymptotics, at least in leading order. In order to
prove an upper bound one would like to argue roughly as follows:

E (exp [-BV]) ZP A)exp [~ Al

<3 PO C Ayesp 5]
A

~ Zexp [—B|A] = A(A)T],
A

where A(A) is the Dirichlet eigenvalue in A. Of course, the summation does
not quite make sense, but it should naturally be understood to run over
unions of blocks of side length ea, € small, of a fixed grid.

The main problem is that the sum is running over too many sets. The
relevant A’s are roughly of diameter T/(?+2) where both |A| and A\(A)T are
typically of order T%(4+2) Therefore, there are exp [CTd/ (d+2)] connected
A’s which are of the relevant size, so it is clear that one needs some coarse-
graining in order to reduce the combinatorial complexity of the summation.
It is natural that such a coarse-graining should be possible as the Brownian
motion (or the random walk) is smearing out the empirical measure to some
extent, so one can believe that one does not really have to sum over so
many possibilities. This is also one of the basic ideas of the enlargement of
obstacles technique by Sznitman (which works also in the quenched random
trap situation not discussed here). I will give no details of these techniques,
but will explain in the next section a new approach which has been developed
in the “critical” case, recently. Anyway, if one is ready to believe that such a
coarse-graining works, one gets

E (exp [-BV{]) & exp [—T4/(4+2) inf {BA] + A(A)}],

where A(A) is the Dirichlet ground state eigenvalue of A/2 in A, and where

%% means that the quotient of the logarithms is going to 1. The variational
problem above is a well known one in Mathematical Physics from the be-
ginning of the century, which has been solved independently by Faber and
Krahn, who proved that the unique minimizers are the balls. This is closely
related to the classical isoperimetric problem, and can be reduced to it.
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A problem in the spirit of the last section is to determine the behavior of
the path measure
. exp [—BVE]dP
Zr

for large T. In the formulation as a trapping problem this would be the
distribution of the Brownian motion, conditioned not to be trapped up to time
T, in the annealed situation. From the Faber-Krahn Theorem it is natural
to expect that the paths under this measure are concentrated on balls of
radius about p(8)T'/(?+2) In particular this should mean that the path stays
confined within a region of this order. However, even given the techniques
to prove the Donsker-Varadhan results, this is far from being evident. The
main delicacy is coming from the fact that one has to get some control over
certain expectations beyond leading order asymptotics. In this respect the
situation is quite similar to the one encountered in the last section, where
the different possibilities on the fibers could not be distinguished by leading
order asymptotics, too.

To see the difficulties in the present problem, consider the event that the
Brownian path rushes off through a small tube (of radius 1, say) to a distance
which is very large compared with 7%/(4+2) | to be specific, say to VT, and
afterwards settles in an optimal ball such far out. This eccentricity gives a
contribution of order v/T to the volume of the sausage, which may look large,
but which is negligible when compared with the volume of the optimal ball,
which is of order T9/(#+2) The probability for rushing (in time VT, say)

through this narrow tube is for the standard Brownian of order exp |—v/T| ,

which may look small, but which is very large compared with the probability
that the path does what we expect of it, namely to stay within the optimal
ball, which is exp [—CTd/ (d+2)] . The path could of course do many other
things besides just this “tube eccentricity”, and at the outset, it is not clear
if one really should believe in this confinement (and had in fact been doubted
by experts in the beginning).

The problem had first been addressed independently for d = 2 in two
papers, the first one by Sznitman [72] and then in [11] for the random walk
case. (The first versions of the two papers came out at about the same time.)
The confinement has now been proved in a recent paper by Povel [62], which
is based on the approach by Sznitman. The results for d > 3 are still not
quite as precise as the one for d = 2.

Theorem 2.50. There ezists a function 6(T) — 0, as T — oo, such that
a) ford=2

Th—>Héo PT (3.13 € B/t (0) : B, —s(ry)yr1/@t2) (x)

C W;« C Bp(1+6(T))T1/<d+2) (.23)) =1
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b) (Povel [62]) for d > 3:
Th_r}r;o PT (31’ S BpTl/(d+2) (0) : Wr% C Bp(1+5(T))T1/(d+2) ((E)) =1.

Sznitman’s result contains also the limiting distribution of the centering
of the optimal ball, which is not at 0, but which is distributed (after rescaling

space with (pTl/ (d+2))_1) to the normalized ground state eigenfunction of
A/2 inside the unit ball.

There is no serious doubt that the full result, i.e. also a) and including the
limiting distribution, is true in all dimensions, and could probably be proved
by some additional efforts. The information on §(7) is still very modest. The
only information which is known is that one can take some decay of the form
T~ for some o > 0. Bounds for a could be given, but they certainly are not
optimal. It seems to be completely out of reach by present day’s methods to
get the precise behavior of the boundary, not even for d = 2. An interesting
aspect, however, is the proof of such a droplet construction in sup-distance
in any dimension.

It is fairly clear that a complete expansion of E (e’ﬁVT) up to order
(1 4+ o(1)) would be very helpful and desirable for the problem, but this
seems to be completely out of reach, too. The methods in [13] do not apply,
because Vr as a function of the empirical distribution has very bad continuity
properties. The best results so far is the one obtained in [11] for the random
walk where one takes

Nr déf#{x e Z%: X, = zforsomes < T},

instead of Vp. The rough large deviation result (Theorem 2.49) is exactly
the same as in the sausage case. The following sharpening of the statement
in Theorem 2.49 is proved (in the random walk case) for all dimensions in
[11], provided the variational problem has a rigidity property of the form of
Theorem 2.51 below (which I hadn’t known to be proved when writing the
paper). The statement is that there exist c1, ¢g, € (depending on d and )
such that

exp [_w(ﬁ)Td/d-ﬂ) —a (6)T(d—1)/(d+2)}
< E(exp [-8Nr]) (2.40)
< exp [7w(ﬂ)Td//d+2) + CQ(ﬂ)T(dfe)/(d+2):| '

€ can be estimated but presently, there is no hope getting the correct €. There
is a non-rigorous calculation in the physics literature [47], claiming that the
correct correction is of the form of the lower bound:

E (exp [=BNr])
= exp _¢(5)Td/d+2)+cl(ﬁ)T(d—1)/(d+2)+O(T(d_1)/(d+2)) 7
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but this is based on some Gaussian Ansatz for the field of local times, and I
do not know how reliable this prediction is. If correct, this would mean that
the correction to the volume order large deviations is of surface order. This
is a very interesting open problem.

One crucial ingredient in all the proofs of results like Theorem 2.50 is an
analytic rigidity property of the variational problem, which in our case can
be reduced to a rigidity property in the classical isoperimetric problem. This
property states that if there is a (nice) subset A in R? which has as volume
that of the ball of radius one, and a surface which is slightly larger, then
there exists a ball with radius one which is close in some sense to A. There is
a substantial difference between d = 2 and d > 3. For d = 2 such a statement
can easily been proved in Hausdorff-distance (with the help of the Bonnesen
inequality), but in higher dimension, this evidently cannot be true. In fact,
for d > 3, there are sets A with thin spines, these spines having essentially
no volume and surface. It is therefore clear that such a rigidity can only be
true in some L;—sense. The following result has been proved by Hall [54].

Theorem 2.51. Let wy be the volume of the ball with radius 1, and oq its
surface. There exist c(d), a(d) > 0 such that for any Borel subset A of R¢
with rectifiable boundary OA which satisfies |A| = wq, there evists x € R?
such that

AAB (2)] < e(d)(0A] — 7).

It is possible to derive from this a corresponding rigidity result in Ly for
the variational problem appearing in the Donsker-Varadhan result

P(B) = lgilr;le{;/IVgPJrﬁ/l{gQ > O}d:c}.

This has been done for d = 2 in [11], but the proof there works in all di-
mensions, given the above theorem. The solutions of this variational problem
are unique modulo shifts and given as the ground state eigenfunctions over
the ball with optimal radius o(f3), (i.e. just the usual Bessel function). This
is the content of the celebrated Faber-Krahn Theorem. Let F be the set of
squares of these optimal profiles. From Theorem 2.51 one can derive (this is
not completely evident)

Proposition 2.52. There exists 6 > 0, and c¢(8) > 0 such that

1
ity (199845 [ Lponde: [Pdo=1 nt]lf - ¢l 2 a)
> (B) + c(B)a’.

(see Lemma 3.1 in [11]).
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This rigidity property implies in any dimension a corresponding prob-
abilistic property in L;. Due to bad continuity properties of the Lebesgue
measure of the support, even this is not completely evident. However, the
main difficulty is to improve this Li-version to an L..-version.

I will give a short outline of this in the random walk case. To state the
Lq-version, first a compactification is convenient, which is just the usual torus
compactification. Fix some multiple of the optimal radius o(3), R = 10p(5),
say. Then we perform the usual periodization on a torus of side-length
RT 2+ and we scale everything down to a torus of finite side-length R,
by replacing the random walk X;,t > 0, on the torus by

Ny = Tﬁl/(d+2)XtT2/(2+d) )

living on ]LEFR) =TV RTYCHD)Yd This is now a process which

is running on a torus of fixed size (but with grid which becomes finer and
finer). Remark also that the total time for the rescaled process is

5 def pd/(d+2)

Next, we consider the ”local times”

pd/(2+d)

#Wm=A 1, (ns)ds,

T E L%R). Remark that E%R) is normalized in the usual sense:
/E}R) (x)dx =1,

if K(TR) is extended to the continuous torus [0, R)? by putting it constant on
the plaquette of side length 7—'/(2t4) The probabilistic counterpart of the
above Proposition 2.52 is the following result which has been proved in [11].

Proposition 2.53. There exists § > 0 such that
LA R -5
Jim Prs(|677 = Fla = 77%) =o.

There is of course no problem to define F on the torus, as the members
of F (on R?) have as support the balls of radius o(3).

A consequence of this is that (on our torus) most of the mass of E;R) is
concentrated inside a ball of the optimal radius. However, we are not really
interested in the torus situation, and it is not clear that the above result
should give us anything for the non-compact case. The crucial problem is to
boost the result on the torus to a proof that there is no mass outside a ball of
radius p (). Once one has proved this confinement property for the random
walk on the torus, meaning in particular, that the confining ball most contain
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the starting point, it is evident, that one has also proved that the original
problem (on Z%) has the corresponding confinement property, and therefore,
Theorem 2.50 follows, at least the statement in part b).

The method how to achieve this had been different in Sznitman’s (and
now in Povel’s) papers, and in [11]. Roughly speaking, in [11] it was done by
“bare hand”, whereas in [72] and [62] this came out from the enlargement of
obstacles technique, together with some other non-trivial considerations.

I quickly sketch the main idea used in [11], which might be useful in other
contexts, too. It is based on an iterative procedure. The above proposition
implies that the total time spent outside a ball of optimal radius p is bounded
by some 77 = T"%/(d+2) p < 1 in the time scale of the rescaled walk. We
would like to exclude the possibility that there is any time spent outside.
Now assume that the path really spends time 7% (4+2) outside the ball, but
that it is very pleasant and does this just at the end, and stays confined
up to time 774/ (d+2) _ pd/(d+2) A moment’s reflection shows if the path
could only do such a thing, this could easily be excluded. We can separate
what the path before and after 7% (4+2) — T/(d+2) 5 doing (we used such
arguments in the lest section). Arguing now anew with the shorter path of
length 774/ (d+2) « T4/(d42) "we can conclude that under the Gibbs measure,
in reality, it would be essentially be confined to a ball of radius < T/(4+2),
doing some “really” nasty things just on still a smaller piece, hopefully being
pleasant enough to do it at the end such that we can iterate the argument
until we have shown that there can be no excursion at all.

The trouble is of course that a priori the path has no reason to be so
pleasant to do the nasty things just in one piece. There could be many pieces,
starting and entering from remote points on the surface of the droplet, and
doing all kind of pranks. The argument to get this under control was roughly
as follows. One introduces a (finite) number of radii slightly lager than the
optimal o(8) =19 <711 <719 < ...Tp. Actually the differences r; — r;_1 can
be chosen to decay with 7. Then one knows from Proposition 2.53 that the
total time spent outside r; by the rescaled walk is at most 797/ (4+2) 5 < 1.
This can then be boosted to prove that outside ro there is still less, namely
< T92/(d4+2) ', < gy The reasoning roughly is that one can separate what
is outside r; from what is inside and argue as before. One can proceed in this
way and prove that outside 7, there is nothing left. The proof in [11] of this
inductive cutting of the excursions was quite involving and depended besides
Theorem 2.51 on some previous knowledge which was very easy for d = 2,
but which was not done in higher dimensions.

On the whole, the Sznitman argument was considerably more elegant, but
it uses quite special properties. In particular the fact that the ground state
eigenvalue is very strongly tied to probabilistic properties was used heav-
ily. The argument sketched above is essentially just a complicated counting
argument and might be of use in other problems.
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2.6 Moderate deviation for the Wiener sausage

I discuss in this section a recent result obtained together with Michiel van
den Berg and Frank den Hollander [6] on what one might call the “critically
shrinking Wiener sausage”. It will become clear later on in which sense the
situation is “critical”. The interest in this special case is coming from the fact
that it is the border-line case where the Donsker-Varadhan behavior, which
played a major role in the last section, starts to break down, and where the
droplet we have discussed in the last section starts to “dissolve” in a way
which will become clear.

2.6.1 Introduction and heuristics

In the classical Donsker-Varadhan result for the Wiener sausage discussed
in the previous section, the main contribution to E (exp [-8Vr|) was com-
ing from paths which stay inside a ball of radius rp = p(8)T/(@+2). The
“strategy” the path has to follow is somehow trivial: The ball is filled just
completely. Even if this is not fully proved in all dimensions, the fact that
the trivial lower bound is correct in first order tells us that this is at least up
to leading order the correct picture.

Consider first a much easier problem namely a Brownian motion, which is
conditioned to stay inside a ball of radius 77. What is the effect on Vr of this
conditioning? It is well known that under Wiener measure, Vr is typically of
order k,T, for d > 3, where k, is the Newtonian capacity of a ball with radius
a (see [67], [49], there is a logarithmic correction for d = 2). If the Brownian
is confined in this ball, the volume can be at most of order T%". Therefore,
this confinement has trivially a substantial effect on the volume when 0 <
~v < 1/d, and it is not difficult to prove that a sausage of the Brownian which
is confined to stay inside such a small ball is filling it completely, except
near the boundary. Therefore, the volume is (up to smaller order corrections)
just the volume of the ball. Let’s look now at the opposite situation where
~v > 1/d. In that case, of course, the volume of the ball is much larger than
the expectation of the sausage it has when not confined, although for d > 3,
and v < 1/2, confining the Brownian to stay inside Bp~(0) is still a large
deviation. It is however not very difficult to see that the confinement in
this case has no effect in leading order on the volume of the sausage. i.e.
E (Vp |Wr C Brv (0)) = 6T + o(T). I don’t know of a reference for this
claim, and I don’t want to prove it here, but the reader can easily convince
himself of this fact. It is therefore clear that the critical confinement radius
which should lead to a sizeable effect on the sausage is of order T/¢. It is also
not difficult to prove that the Brownian motion conditioned to stay inside a
ball of radius 7%/¢ (d > 3) has an expectation of the sausage of order T but
smaller than k,T : E (Vp | W C Bgisa (0)) = aT + o (T) with a < Kg.

Let’s now go back to the (much more difficult problem) to discus
E (exp [-BT~*Vr]). If we proceed with the lower bound explained in the
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last section, the optimal radius to choose will be the one where T~%r4 is of
order T/r2., i.e. where rr is of order T(+2)/(2+d) Now, this radius becomes
of order > T/ when a > 2/d. It can therefore be expected that for o < 2/d,
the Donsker-Varadhan picture stays correct, and

i T2/ ) 100 Bexp [-BT“Vr] = ¢(3).

This is indeed true, and has been proved independently in two papers ([10],
[70]). The original Donsker-Varadhan approach however does not immedi-
ately extend to this situation and has to be refined. For o > 2/d this
“Donsker-Varadhan ball picture” breaks down, which should be quite natural
given the above discussion. In fact in leading order, the lower bound com-
ing from the Jensen inequality is better than the one coming from the “ball
strategy” and turns out to be sharp at least in leading order:

Bexp [-6TVy] % exp [T "B (Vr)] ~ exp [, T' ] .

The fact that Jensen is sharp can only mean that it is not “worth” for the
Brownian to make any efforts and therefore that the corresponding path
measure

dPr = exp [-BT~*Vy| dPr/Zr

should just be close to ordinary Brownian. This has not been proved, and in
view of the discussion given in Section 2.3, one would probably have to prove
first that

Eexp [fﬂT*O‘VT} < Cexp [fﬁnaTlfﬂ ,

which has not been done. Anyway, the most interesting case is certainly
a = 2/d, where we now have two lower bounds, one coming from Jensen,
and the other one from the ball confinement strategy. On the background of
the fact that a Brownian which is conditioned to stay in the ball of optimal
radius does not fill the ball completely, one would certainly not expect the
lower bound to be sharp (in leading order). Somewhat surprisingly, it turns
out that the Jensen inequality is sharp for small 3, but not for large, where
something more interesting is happening, and where also the ball strategy is
not the proper thing. This will become clear later.

It turns out that we Dbetter do mnot start with discussing
FEexp [—5T*2/ dVT} , but rather with a problem which looks equivalent, but
isn’t quite, namely with the probability that V7 is small in a range which
would correspond to this critical case. It is natural to expect that the discus-
sion of E exp [—BT~2/?Vr] is tied to the question of discussing P(Vy < bT),
where b < k4. In fact, we can evaluate F exp [—6T*2/dVT} in leading order
from the evaluation of P(Vy < bT'), but not vice versa.
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Theorem 2.54. Assume d > 3. Then for b € (0, k,)

lim T~@=2/d1og P (Vp < bT) = —1(b)

T—o00

where

1 2
I1(b) = inf {2 IVgl2 : g € Hy(RY), |lg])? = 1, / (1 — g rag(®) ) da < b} > 0.
(2.41)

Remark 2.55. a) There is also a version for d = 2. In that case, E(Vy) ~
kT /logT, where k is the logarithmic capacity. The Theorem has then to
be modified accordingly, i.e. one discusses P (Vp < bT/logT).

b) It is easy to evaluate F exp [fﬂT’Q/dVT] using Theorem 2.54:

lim T~=2/1og B exp [fﬁT*/dVT} = —JB), (242

T—o0

where J is the Legendre transform of I :
J(B) =inf {bs + I(b) : b € (0,Kq]}, (2.43)

but not the other way: I is not the Legendre transform of J. This is
simply coming from the fact that I is not convex (whereas J is). This will
become apparent below. It will also turn out that for small 3, the infimum
is attained at b = kg, so that for small § one has J(8) = k0 (I(Kq) is of
course 0), i.e. the Jensen inequality is sharp in leading order.

c¢) Presently, we are not able to discuss the path measures, for instance dis-
cuss the limiting behavior of the distribution of the end point Gy under
P(-|Vp < bT) or under dPp = exp [—BT~2/?Vy] dP/ Z. From the discus-
sion in the last section it should be clear that the measures are living on
scale T'/? i.e. one would expect that 7-'/¢3; has under these measures
a nontrivial limiting distribution. For Pr however, there should be a “col-
lapse transition” from small to large 5. In the region where J () = k.0,
i.e. for small 3, one would expect diffusive behavior, and only for 3 large,
one would expect a subdiffusivity. However, most probably, there are fur-
ther complications for d > 5, for reasons which will become apparent in
the next section. Nothing on the path measures is proved, and it may be
quite difficult.

d) The result can easily been extended to more general “sausages” where
the ball with radius r is replaced by an arbitrary compact set C' with
positive capacity, i.e. where W = |J,.(8s + C). Remark also that the
rate function I does depend (via the capacity) on this compact set. This
is not done in [6], but it follows by the same method.

I first will give an intuitive explanation why the above large deviation
principle should hold and why the variational problem looks as it does. Af-
terwards, I will present in Subsection 2.6.2 the main analytical properties of
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the variational problem which are quite interesting and surprising. I will not
give detailed proofs, but some explanations which hopefully will convince the
reader, that the results have to be true. It is clear that the properties of the
variational problem should be reflected also in properties of the path mea-
sure, but as remarked above, we don’t know how to prove this. Especially,
the somewhat strange behavior of the variational problem for d > 5 we will
encounter must be reflected in an equally strange behavior of the path mea-
sure. I will then give a fairly detailed proof of the interesting probabilistic
part of the Theorem 2.54, namely the upper bound in Section 2.6.3.

I start with giving a heuristic derivation why the rate function should
have the above form.

From the discussion previous to the statement of the theorem, it should be
apparent that the main contribution to the event {Vpy < bT'} is coming from
paths which are staying at distance of order 7'/¢ from the origin. Further-
more, it should also be clear, that we no longer can expect that the “strategy”
of the Brownian being as simple as to just fill a certain region completely,
essentially without leaving holes. In contrast, we expect that there remains
some porosity, and we have to control the degree of this porosity. The reason
that we expect such a porosity is simply coming from the fact that a Brow-
nian motion conditioned to stay inside a ball of radius T*/¢ exhibits such a
porosity. This can easily be checked (but of course does not prove that such
an effect is happening in our problem, too). This porosity is however felt only
on a very microscopic scale: It turns out that the holes which are of relevance
and are responsible for the porosity have size of order one. What we prove
is essentially that the degree of the porosity is tied to empirical distribution
at a macroscopic scale (i.e. T 4) deterministically, up to a superexponential
estimate.

We first rescale the Brownian motion accordingly, by introducing Bt =

T Y98,rosa, t < 7 df pd-2)/d Ag 7 is the “correct time scale”, we keep

this notation in this way, and use 7 always for this. Consider the empirical

process
def 17
L, = — 55 ds.
T Jo s

By a (weak) LDP, we know that roughly speaking
2 1 2
P (Lo~ ) ~ep | -3 IVFIE].

It is however not quite clear what L, has to do with the volume of the Wiener
sausage. Remember that 3; is scaled down by a factor T-1/4 = 7=1/(d=2) i
space, and therefore

V=T ’supp (XBM,W,2> * LT>

i
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where B,.(z) is the ball with radius r and center z, B, = B, (O) X4 is the
indicator function of the set A, and (f * f flz — y)u(dy). There is

evidently some trouble as Mf(Rd) S u— ‘supp (XB * ,u)‘ depends

ar—1/(d=2)
certainly not continuously on u, and furthermore depends on 7.

We call 771/(4=2) the microscopic scale. Let’s look at a small but macro-
scopic box, i.e. we consider a hypercube @ of side-length ¢ and center
reR: Q= H?:l[xi —€/2,x,+¢/2). L;(Q) measures the relative amount of
time, the rescaled Brownian Bt,t < 7, spends inside Q). Evidently, this total
amount will usually be cut into many time pieces, the Brownian exiting and
reentering the cube. We make a number of very simplifying (false) assump-
tions: First, we pretend that () is not a cube, but a torus of the same size
with periodic boundary conditions. Next we assume that these many pieces
of the Brownian inside @) are just one piece of a Brownian on this torus run-
ning up to time L, (Q)7. We will then make this assumption for a collection
of @’s which cover the space and patch things together, but let’s first dis-
cuss the problem how much of our @), which is now a torus, is covered by the
(shrinking) sausage. We might hope that the calculation of the expectation is
sufficient, and this in fact will turn out to be correct. This may be somewhat
surprising as, after all, we are after a large deviation phenomenon, and so
we may expect that deviations from expectations will play a réle. However,
we will prove that the deviations of the volume of the microscopic sausage
on small macroscopic boxes from its expectation can be estimated on a su-
perexponential scale in 7 if the boxes are small (“mesoscopic”). Therefore,
we first calculate the expectation of the volume of our (critically shrinking)
Wiener sausage (with radius ar—/(4=2)) where the Brownian is running on
a torus of side-length ¢, and the total time is Ae?7. Lets denote this volume
by X. As we have made all kinds of (false) assumptions, we can as well add
one more, namely to have the uniform distribution as the starting measure.

EX = / dx P (Els < Xelr: B, € BaT_l/(d_z>(x))
Q

=|Q| (1 - P (ﬂs ¢ B, 1/(a-2(x),¥s < /\EdT)) .

We now chop the time interval [0, \e?T) into many pieces of large length
K, which we assume not to grow with 7. The probability that the Brownian
(with uniform starting distribution) hits B,,—1/-2 () in the time slot [0, K')
is I;f: + o(771). If the Brownian does not hit the ball in the first interval,
it gets a next change in the second. The conditioning on non-hitting in the
first, does not much influence the distribution, as the ball which has to be
hit is small anyway. Therefore, we get approximately the same chance for the
second slot which is essentially independent of the first one, and so on. We
therefore have

Kk et/ K
P (Bs & Byr-1/ta-2 (2),Vs < Aer) (1 - a) ~ exp [—Kq
T
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and therefore
EX ~e¥(1 — exp [~ Akq)).

We now chop R? into cubes @, of the above size, and assume for the moment
that L, (Q;) ~ \ie?r. Then the sausage fills, up to superexponential estimates
for the probability not doing so (if the reader believes in what was said above),
the @; with a proportion 1—exp [—A;k4] . Therefore, the total volume covered
is 3, e (1 —exp [~ \ika]) -

This does all the job on the microscopic scale, and the large deviation
we are after is now only a large deviation on the macroscopic scale, i.e. a
standard large deviation for L, which is governed by the classical Donsker-
Varadhan LDP. We have to sum over all possibilities for choosing the \; but
according to standard wisdom in large deviations, only the maximum counts,
and we get

P(Vp < bT) ~ max {P(LT ~ f): /(1 —exp [—kof(2)])dx < b}
~ exp [—71 (b)],

: 1 2 —kag®(x)
= = Vg3 a <bp.
I(b) 1nf{2 IVgll5 / (1 e ) dr <b

That’s it, and there remains only to prove it.

I present the real core of the argument in subsection 2.6.3, taking however
some (plausible and not too difficult) technical Lemmas for granted. Before
starting with it, I want to give some information about the variational prob-
lem, which had been quite surprising (at least to us).

where

2.6.2 Analytical properties of the variational problem

I am discussing here the main analytic features of the variational problem
(2.41). T will not give detailed proofs, as they partially are quite lengthy,
but I will try to explain the main properties. There does not seem to be an
explicit solution. It is not too difficult to prove (using standard techniques)
that all maximizers of the variational problem are radially symmetric. In
principle, one can then discuss the one-dimensional Euler equation, which is
just a nonlinear second order differential equation, but this seems not to be of
much help. For instance, we have been unable to prove that there is a unique
maximizer (modulo shifts), and the problem does not appear to belong to a
class which has been treated in the literature.

The behavior of I(b) for b ~ 0 is easy and offers no surprise: The vari-
ational problem goes over (after a rescaling) into the variational problem
for the classical Donsker-Varadhan situation. It is fairly evident what the
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best way is in which a normed Lo—function can achieve a small value of
il (1 — e*"”"ag(ry) dz, best in the sense of having small value of \|Vg||§ 1 g

just has to be essentially 0 outside some small ball. Inside the ball, g the121 is
quite large, because of the restriction fg2 (z)dz = 1. Therefore 1 — "9 ()
is there essentially 1 inside the ball. This means that for small b we have

|
I(b) ~ inf{S [ 7 g3« lglla = 1, [supp(g)| < b}
After rescaling, this leads to

Proposition 2.56. Forb— 0
1 _
I(0) ~ 5Aa(wab) 2/d,

Much more interesting is the behavior for b ~ k,. We naturally expect
that the relevant functions for the variational problem become flat as b 1 k.
Following this idea, one expects that we just may expand the exponential:

1
1= exp(—#ag”) > Kag® = Shag",
and replace the restriction by the corresponding restriction on the expanded
expression. Implementing the above, we get

2
/(1 - 67”“92)d:c ~ Ky — % /g4(:z:)dx.

This means that for b < k,,b ~ K4, we should have

2
Kq

() ~ mf{;u 2 /gQ(x)dx —1, 7/94(93)65:3 . —b}. (2.44)

The trouble is that the r.h.s. is 0 for d > 5. This is well known, but I give
the proof as it indicates how things should run for d > 5. The claim simply
is that for any @ > 0, and d > 5

2
inf {;H vl /92(a:)d33 =1, % /94(x)dx = a} = 0. (2.45)

Here is the sequence, which does the job: We choose a ball with radius 1/n,
and over this ball a circular cone of height a,,. This is g,, inside the ball. We
will describe g,, outside in a moment. We choose a,, such that |’ B, gt (x)dx ~

a, i.e. a, ~ n%* At the boundary, g, is not quite 0, but this will have no
effect on the Ly-norm. The contribution to the Ly-norm from inside the ball
is then negligible, and we choose g,, outside very flat, producing the necessary
Lo-norm. It is clear that we can do that in such a way that this contributes
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nothing to the Ly-norm, and also nothing to || 7 g3 (asymptotically). In
this way we take care of ||g,||3, and || <7 g»||3 is now determined from what
is happening inside the ball:

/ | 7 gn(2)|?dz ~ n™%(nay)? = n=2n/2,

Bi/n

which goes to 0 for d > 5, proving the above claim. This reveals that our
approach of expanding the exponential for d > 5 is a failure, and we will come
back to this in a moment. For d < 4, this is however the correct procedure,
and one can prove the following result:

Proposition 2.57. Assume d < 4. Then as b? kg
I(b) ~ 27 K (15 — b)),

where

a) ford<3 pq=inf{|Vg|3:9€ H" (RY),[gll2=1,/glla=1}>0
b) ford=4  pg=inf{||Vg|3:ge€ D" (R*),|glla = 1}.

(For background material about the spaces H' (]Rd) and D! (]Rd), see
[51])

A consequence of this proposition is that for d = 3,4, I is concave close
to kg (of course, the above result does not quite prove this), and has infinite
tangent at k.

We come now to the case d > 5. The argument above leading to the
conclusion (2.45) does of course not prove that I(b) = 0, simply because the
functions in the sequence we have chosen had a high peak inside a small ball,
and this peak was important for the result. Remark furthermore, that the
whole Lo-norm was “leaking” to co as n — oo. For the peak inside the ball,
the expansion is evidently not the right thing to do, and therefore, (2.45)
does not give any immediate indication what the behavior of I (b) should
be. In fact I(b) > 0 for all b € (0, K,). There is however one feature of the
above considerations which are important for the behavior of I(b), b ~ kg,
namely the possibility that L is leaking to infinity (which happens for the
sequence g,). To catch this, we apply a trick. For f g?dr = 1, we have
[(1 = e 9" )dx = u if and only if

/(KJGQQ -1+ e_’““gz)dx = Kq — U.

The integrand has the advantage that it decays with g* if ¢ is small. If
therefore Lo-mass of g is wandering to infinity, this is not visible in the
integrand, meaning that the integrand would behave continuously, although
the Lo-norm would jump. We can therefore try to look at the variational
problem forgetting for the moment the ||g|]2 = 1 condition, i.e. look at
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. 1 2
o(e) = 1nf{§HVg||§ : /(HGQQ — 14 e "9 )dx = ¢}.

This problem is “well posed”: one can prove that minimizers exist, and the
infimum is > 0. In fact, the € dependence is trivial, and can be obtained by
a rescaling

ole) = 2 g(1),

but it is crucial for this that we have left out the condition ||g||, = 1. The
above equation simply follows from the following observation: If g satisfies
[(Kag? — 14 e *a9")dx = 1 then g.(z) = g(c¢~'/9z) satisfies

/ (mgs(ac)2 -1+ e*”agﬁ("”f) dr =,

and s
IVgells = &7 |Vgll3.

Unfortunately, we have not been able to prove that the variational problem
for o(1) has a unique minimizer (modulo shifts), and we cannot exclude that
there are several minimizers with different Lo-norm, although this does not
look very plausible. One can however prove that there are minimizers, which
are positive everywhere, and any minimizer has to be rotational symmetric.
Let us pretend that there is (modulo shifts) just one or at least that all have
the same Lo-norm. If this is not the case, the statement needs some messy but
not very important modifications, and the outcome is essentially the same.
Let therefore ¢; be the minimizer for p(1) (symmetric around 0, say). If we
scale 11 to serve for g(¢), i.e. take 1. (2) = 1 (¢~ x), then

2
13 = e ll4nllz -

Now, our real problem is to determine

o1 B
10) = int (57917 lalla = 1. [ (rag? = 1 €77 do = n =8}, (240

and it looks like that with have not gained very much to calculate o(x, — b)
because 1, would only be the relevant minimizer if (k, — b)||¢1]|3 = 1.
However, it turns out that if (k, — b)||¢1]|3 < 1, one in fact has

I(b) = o(kq — b) = (ka — b)!72/9p(1).

The point is that the variational problem (2.46) does in that case not have a
minimizer, because Lo-mass is leaking out to infinity. Therefore, the relevant
variational problem is simply the one without the Lo-restriction. This leads
to the following conclusion (which is correct regardless of the uniqueness
question).
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Proposition 2.58. Assume d > 5. Then there exists bo(d) € (0,kq) such
that for b € [bo(d), ka] one has

I(5) = (ka — B)“=2/5(1).

In the case where (k, — b)||11]|3 > 1, which is true for b small, I(b) has
nothing to do with p. The Lo-restriction then “deforms” ) in an essential
way. We also know that in this case the variational problem for I(b) has
solutions which have Lo-norm 1. For more details and proofs, see [6].

The previous claim that J () = k.0 (J from (2.43)) for small 8§ now
follows easily. From the fact that I (8) has tangent oo at 8 = k, implies that
the infimum in (2.43) is attained in 8 = Kq.

It is interesting to speculate what the behavior of the variational problem
implies for the path measure. It should be evident that for d = 3,4 and for
d > 5 and b small, the paths under P(-|Vp < bT) are living on scale T/¢,
meaning for instance that

supE(T~Y4|6p| |V < bT) < co.
T

On the other hand, when d > 5 and b is close to k,, probably the behavior
is different. The fact that the variational problem looses mass to infinity can
only mean that the path stays “confined on scale T%/%” only on part of its life
time. For instance, one can imagine that the path first feels the confinement
on a fixed proportion of T', and afterwards floats diffusively, but one could also
imagine that a more complicated behavior emerges. All this would probably
be very difficult to prove.

2.6.3 Proof of the upper bound in Theorem 2.54

I prove here the upper bound, except that I leave some technical lemmas
unproved, but I will give some explanations for them.

It is convenient to use the usual trivial compactification procedure winding
the Brownian motion on a torus. This we do however after having done the
rescaling leading to By = T~ V98,120, s < 7 = TW=2/d We get Vi =
TVT‘”A/M%). We wind the Brownian motion {ﬁ:} _ ona torus Ay of fixed

ST
size with side length N. By an abuse of notation, we write V2V 4 yar™/¢7%
but we also often drop the index N. Evidently, we have

Y

PV <bT) < P(VN <b).

To get an upper bound of the left-hand side, we therefore have to bound the
right-hand side. The main result to get that is:

Proposition 2.59. V.V satisfies a T-large deviation principle with rate func-
tion
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vt = it {3 [ Vo)l o g e Hilay)

. /AN [1— exp (—rag?(x))] da = a}

where Hy(An) is the usual Sobolev space of once weakly differentiable func-
tions with derivative in La(An ).

The upper bound in our main Theorem 2.54 follows easily from this propo-
sition. The only thing which remains is

Lemma 2.60. limy_,o Iy(a) = I(a) for all a.

I will not prove this lemma, which is not difficult.

A slight extension of the above proposition also leads to the lower bound
in Theorem 2.54. T sketch the argument: Fixing a (large) number R, we have
(on RY)

P(Vp <bT)> P (VT < bT, sup | 5| < RTl/d> .
t<T

For the rescaled Brownian, the second event on the right-hand side is
SUp; <, ﬂt‘ < R. If we choose N > R, then it doesn’t play any role whether

the probability above is calculated for the torus Brownian motion or for the
unconfined one. A slight extension of the proposition above gives for V.V,

Et < R} a 7-LDP with rate function

conditioned on the event {suptST

def

n@) ™ it {5 [ 9@ o supp o)

C [];, ];]d’ / [1 — e*”‘IgQ(I)} dx = a} .

Then

o 1

sup |3 < RT”Li)
t<T

.. 1 1/d
- o 1 1/d

The lower bound in Theorem 2.54 then follows by letting R — oco. I don’t
give the details which are not very interesting.
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I will give the proof of the Proposition 2.59 in some details. From its
form, it is clear that we should get it by a kind of contraction principle. It
seems however impossible to get that directly, and we use an approximation
procedure. For the rest of this chapter, the torus Ay is fixed. We usually
drop N in the notation. We also drop the tilde in G, and just write 34 for
this rescaled Brownian motion. Time is always running up to 7.

Here is an outline of the procedure:

A) We first approximate V, (= V.V) by its conditional expectation

EE(VT) = E(VT| {ﬁiﬁ}ogigr/e)’

where ¢ is a parameter > 0. We prove that the difference between V. and
E.(V;) is negligible in the e — 0 limit. This is done by an application of
a concentration inequality of Talagrand.

B) We represent E.(V;) as a functional of the empirical distribution

T/e

e
Le, = p Z 5(/35(71—1),551')'
=1

According to one of the very basic large deviation results of Donsker and
Varadhan, L. ; satisfies for fixed ¢ a strong LDP (on the torus). We still
will need some further approximations to get the dependence of E. (V)
on L. ; in a suitable form, but essentially based just on this basic LDP
for Lc ,, we get via a contraction principle a LDP for E. (V).

C) We finally have to perform the ¢ — 0 limit. We now already know that V,
is approximated by E.(V;). It therefore will suffice to have an appropriate
transition for the variational formula.

We write X;. = {Bic};<;<,/.- (For notational convenience, we always
assume that 7/ is an integ_;er_). We denote by P. and E. the conditional
probability and expectation with respect to X, . . The first main step (A) is
to prove that V. is well approximated by E.(V;) in the following sense:

Proposition 2.61. For all § > 0 we have

lim limsup1 log P(|V; — E.(V;)| > 8) = —o0.
T

e=0 71500

Proof. The proof is based on Talagrand’s concentration inequalities. We de-
note by m; . the median of the distribution of V. under the conditional law
P.. Furthermore, let W;, 1 <14 < 7/¢, be defined by

W, = U B, -1/(a-2)(08s)- (2.47)
s€[(i—1)e,ie]

Evidently, the W; are, conditionally on X, ., are independent random closed
subsets of Ay, and we have
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v= UL

Let S be the set of closed subsets of Ay. The mapping d : S x S —
[0,00), d(A, B) = |AAB], defines a pseudometric on S. We equip S with
the Borel field & generated by this pseudometric. P. then defines a product
measure on (S,&)7/¢, which, by an abuse of notation, we denote by P.,
too. We apply one of Talagrand’s concentration inequality to the function
V :87/5 = [0,00), defined by

V(C) = ‘Uj/a Ci|, ¢ ={Ci}.

1

Evidently, V' is Lipshitz in the sense that

T/e
V(C)=V(C)| <> |CiAC.

=1
Let
A= {c €S V(C) < mT/E}.

The distribution of V under P. has no atoms. Therefore, we have P.(A4) = 3.
From Theorem 2.4.1 of [74], we have

T/e

E-(exp M (A {Wi})]) < 2] ] E-(cosh(A W, AW]])),

i=1

where f(A,{C;}) = inf{p,1ca D, d(C;, D;) and {W/} is an independent copy
of {W;}. From the Markov inequality, we therefore get

P.(f(A{W;}) 2 6) < 2;2%e—A5ﬁEs(cosh(A (Wi AW]])) (2.48)
= &;.(6),say. -
Arguing similarly with A’ = {C €S/ v(C) > mT/E} , we get
Pe(|Vr = mye| 2 6) < 20,.(9).

Remark now that |V;| is bounded by |Ay|. Therefore

g 5
‘EE(VT) - m-r,e' < g + 2|AN| PE <V‘r — mT’6| > 3) .

Using this, we have
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0 0 )
- >0) < = — > > —
P.(|V; —E.(V;)| >0) <20, <3> +1 [PE <|VT Mre| > 3) > 6|AN|}

) 1) 1)
<2¢T6 o 12@76 o Z 9
<o (5) 412 (5) 2 7

where I].], denotes the indicator function of an event. Using this inequality,

we get
PV, — (V)] 2 8) <2 (1 n 6'§N') E (@ (g)) |

In order to prove the Proposition, it therefore suffices to show that

1
lim lim sup — log E (- (9)) = —o0 (2.49)

e=0 7500 T

holds for all § > 0. We actually prove more, namely

lim lim sup 1 log [|@; ()|, = —oo. (2.50)
e=0 r500 T

To estimate @, .(5) we will take A\ = as 7 with 0 < o < 1 in
E.(cosh(\ |[W;AW/])). Remark that cosh(ab) < 1+ a?exp(b), if 0 < a < 1
and b > 0. If x € Ay, we write E, . for the expectation under a Brownian
bridge on the Ay-torus, i.e. a Brownian motion (f5s)o<s<. starting at 0 and
conditioned to be at z at time €. It is evident that the volume for the sausage
of such a Brownian bridge on the torus is stochastically smaller than the
corresponding sausage of a Brownian bridge on R?. We then have

E.(cosh(a(r/e) [W; AW]|))
<1407 (Boo oy elexp [(r/0) [0 0] )

where W*(t) = |J,«, Ba(8s). As remarked above, we can replace the right
hand side in the above inequality by the corresponding quantity for the stan-
dard Brownian motion, which has the advantage that we now can use the
standard rescaling properties. Using these, we get

Ey.. (exp [(r/e) w7 2)| )

< By oraran (eXp {5*17*2/(“”2) ’W“(572/(d*2))H> ’

where P>, E> refer to the Brownian on R?. According to the Lemma 2.62
below, we see that there is a 7,(g, N) such that for all 7 > 7,(e, N), all N |
and all x € Ay we have

By, (exp [(T/E) ‘W“Tﬁl/(diz) (E)H) <C.
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We therefore get

/e /e
I E=(coshX [W; AW7)) < T](1 + @*C?) < exp ((7/2)a’C?)..

=1 i=1

Implementing it into (2.48), we get
€ 9 o9&
D, . (6) <2exp [—5047 + C*« f}
T T

and choosing now « small enough (2.50) follows, and therefore the Proposition
2.61 is proved.

Lemma 2.62. There exists a constant C with

sup E% (exp [1 |W“(t)|}) <C.
>1|z<t i

I will not give a proof of this. For the unconditioned Brownian motion,
this follows from estimates in [7]. The lemma states that the situation does
not change much if we condition the Brownian to end in a point which is away
from the starting point at maximum ¢. Although this is a large deviation for
the Brownian, it is evident that this increases the sausage at maximum to
something of order ¢, and so the statement of the Lemma looks plausible. It
is not difficult to prove if by chopping time into small pieces.

We have finished the first part (A) of the proof, and we come to (B).
During the proof of this part, we keep the parameter € completely fixed.

We denote by p, the transition densities for the Brownian motion (on the
torus Ay, but as usual, we drop the N in the notation). For y,z € Ay we
define

q; (y, z) = P(3s < e with B € By(0)|50 = v, e = 2),

and by an abuse of notation ¢ (y,2) = ¢__./_s) (y,2) where a is the radius
of the original sausage. We also set for y,z # 0

2) — fOEpS(y)psfs(Z) ds
pe(y,2) = P

It is evident (see below) that E.(V;) can be expressed with the help
¢:(y, z) and the empirical measure L. ,, and we therefore easily get a LDP,
except for the problem that ¢2(y, z) still depends on 7. We don’t like this
T-dependence. The basis for being able to remove it is the following technical
result.

Lemma 2.63. a) Let b < by < N/4. Then

b\ 42
sup g;(v,y) <C <b>
z,y¢ By, 1
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b) For any €,b > 0 we have

lim  sup |7¢5(y,2) — Kape(y, 2)| =0,
T y,2¢ B, (0)

where Kk, 1s the Newtonian capacity of the ball with radius a.

a) is rather evident and easy to prove. Remember that ¢ is fixed. The claim
is that if the starting and the end point of the bridge are sufficiently for away
from the ball to be hit, then there is only a small chance for this hitting. The
exact form of the estimates comes easily from standard estimates of hitting
probabilities.

b) is more delicate. From scaling, one sees that ¢2(y, z) is in fact of order 7.
The bridge has a chance to hit the small ball only if it already gets close to
it. ¢-(y,z) measure the expectation of the total time, the bridge spends in
the vicinity of the ball. This quantity has to be multiplied with the capacity
of the ball, which is x,/7. For details, see [6].

We now perform the approximation of E.(V;). We first approximate V,
by cutting out small holes around the points 3;.: Fix b > 0 and define

WP =W;\ (Bu(B(i—1)e) U By(Bic))
and set

K _ T/e  pe—1/(d=2)
s |

Evidently, we have cut out at maximum 7 /e times the volume of a ball of
radius K7—1/(4=2) Therefore

Ve — VE| < ce™ KOr2/1472) (2.51)

and therefore the difference is negligible for our purpose. The cutting is con-
venient, because we can invoke then the Lemma 2.63 which helps to expand
log(1 — g) linearly in g just by —q.

E.(VE) = / da (1 —P.(z ¢ Uzl W{“”‘“U)

AN
T/e
—1 d—2
_ / dz |1 {1 _P(zewE >)} (2.52)
An =1
= / dx (1 — exp [Z/log (1 A C :c)) Lg,f(dy,dZ)D ,

where ¢5%(z,y) = ¢S(z,y) if 2,y ¢ By(0) and 0 otherwise. We are therefore
naturally led to the investigation of mappings M (Ax x Ax) — [0, 00)
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D, 50(1) = /A dx (1 — exp {—m / ¢z =,y — x)u(dydz)D :

Then, we get the sandwiching

¢T,(1+5K)/5,K~r*1/(d*2) (Ls,‘r) < EE(VK) < é‘r,l/s,Kﬂrfl/(d*% (LE’-,—),

with dxg — 0 for K — oo. This follows from Lemma 2.63, part a). With the
same lemma, we also see that we can replace K7~ /(?=2) with a fixed (small)
value b :

HE&‘(VK) - ér,l/s,b(LE,‘r)Hm S 61 (T7 K7 b)a (253)

where limp_,o imsupy_, . limsup,_, 91 (7, K,b) = 0. (Of course, we just
estimate |exp [—&] — exp [-n]| < |€ — n|). Instead of spelling out the details
for the above estimate which are easy, I want to give a comment on what is
going on:

The one reason that we did cut out “only” K7~ 1/(4=2)_holes was that
we wanted to use a very crude bound of the total amount cut out. However,
having now arrived at an approximation by @, ; /. gr—1/(-2 (Le ), We want
to cut bigger holes (for the procedure done in a moment). The reader might
wonder that this is possible. The essential point is that the chance to hit the
ar~1/(4=2)_ball in an interval of length ¢ is very small anyway. Of course, we
have to have to know this probability because we multiply it by 7 in @, but
it is not very important if our starting point is only close to the ar—/(4=2)_
ball (still macroscopic) or “very close” (i.e. on scale 7-1/(4=2))_ This region
between “close” and “very close” is negligible, due to our lemma, essentially
because we have the z-integration in the end.

Define now

s [ e (1o [ [ s st}

where ©%(z,y) is ¢-(z,y) if x,y are both outside B,(0), and 0 otherwise.
Lemma 2.63 b) now gives

||¢oo,l/£7b(L€,T> - er,l/e,b(Ls,T)Hoo < 52(7-7 b), (254)

where lim,_, o d2(7,b) = 0 for all b. Combining now (2.53) and (2.54), we get,
by letting 7 — oo, K — 0o, and finally b — 0 (in this order):

7_11{20 H@oo,l/s,O(Le,‘r) - EE(VT)HOO =0.
Doo,1/¢,0(1t) is continuous in p, and therefore, we get the following large de-
viation principle for E.(Vr) (e arbitrary > 0, but fixed), which is based on a
(strong) LDP for bivariate chains, stated after the proposition.
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Proposition 2.64. {E.(V;)}, . satisfies a T-LDP with rate function
ef .
J(b) < inf {13 (1) : j1 € MT (A X AN), Pog1/20(1) = b

Here 15(2)(;;) is the rate function of the LDP for Le . on My (Ax x An) which

18 just
dp
1% :/lo ()d )
(1) e\ dneny) ™

if p1 = po, pg being the margins of p, and oo otherwise. m. is the transition
kernel of the Brownian on the torus on a time interval €.

The proposition follows from the considerations explained above, a con-
traction principle (see [43], Ch. IIL.5) and the following result

Theorem 2.65 (LDP for bivariate Markov chains). Let &, i € N be a
Markov chain, taking values in some Polish space S with transition densities
p(x,y) with respect to a stationary measure © which satisfy

1/C <p(x,y) <C.

Consider the bivariate empirical distribution

n

def 1
L%Q) = EZ(S(EFL&)'

i=1

Then (Lg)) satisfies a (strong) N-LDP in M{ (S x S) with rate function

1 () %t Jlog Wdﬂ if = po
00 if oy # po

where p1,pe are the two marginals of p. p1 ® p is the measure
p (dz) p (z,y) 7 (dy) .

For a proof of this, see [43], Theorem IV.3.

We come now to the last step C) of the proof of Proposition 2.59. Up
to now, we have a LDP for E.(V;), and we know that this quantity approx-
imates the one we are interested in. We therefore only have to prove that
the rate function approximates the right one. There is one delicacy. The rate
function we have for fixed ¢ is a rate function of the bivariate chain. It is
well known, that the rate function of the univariate discrete time e-gap chain
approximates the one for the Brownian motion as € — 0, and the rate func-
tion of the univariate discrete chain is the projection of the bivariate one.
In our case, the function really depends on the bivariate chain. It however
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turns out that for small e, the bivariate chain is essentially determined by
the univariate one, up to a superexponential decay.

For u € M{(Ay), we write I(u) for the standard large deviation rate
function for the empirical distribution of the Brownian motion: I(u) =
3 |Vg|? dz, g?(z) = p(dz)/da if 1 is absolutely continuous, and its density
is in H; and I(u) = oo otherwise. We also denote by I. : M (Ax) — [0, ]
the projection of 1 I.(v) = inf {IE(Q) (1) 1 = V}. We collect some basic
facts about these entropies which have been proved by Donsker and Varadhan
or are simple consequences of their results:

Lemma 2.66. Let (m;)¢>0 be the Brownian semigroup. Then for all v, €
M (An) we have
TsU

a) I.(v) = —inf,ep+ [log =tdv, where DT is the set of positive measurable
functions which are bounded and bounded away from 0.
b) t — L(v)/t is non-increasing with I(v) = lim;_o L)

.
c) |[v—vrg||lpy <8V Is(v) for s >0
d Is(vmy) < Ig(v) for s,t > 0.

&) Iln— 1 ® mollpy <8I (n)

Proof. a) This is Theorem 2.1 of [33], combined with Lemma 2.1 of [32].
b) Let u € D and s,t > 0. Then

/log Mdu — /log Mdy+/1og Mdu > —I(v) — I(v).
" U

T+

Therefore I(v) < Is(v)+ I;(v). Hence, I;(v)/t is non-decreasing. The fact
that lim;_,o It(v)/t = I(v) is Lemma 3.1 from [32].

¢) This is Lemma 4.1 of [32]. (The function ¢ used there is easily seen to be
< 8V/x).

d) follows from the convexity of I;.

e) Let P*(x,dy) be a transition kernel on Ay with g = pu; ® P*. Then

= 1 ® Ty < / 2 () [ PP () — a2, ) gy -
By Theorem 4.1 of [28], we have

1P (@, ) = ms(x, ), < 8VK(PA(x, ) ms(z, ),

where k is the usual Kullback—Leibler information, i.e.

k(vlo) = / log(dy/do)d.

Therefore
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IM—HWWMHVS8/ud®hﬂ@”@ﬁh&%%

< s\/ [ pstpEre, e, ) = 8y 1 ),

Next, we need an approximation of our functions @, /. ¢, for which we
had derived a LDP by the Proposition 2.64, by the simpler functions ¥, :
M (Ax) — [0,00), defined by

0.0) = [[as [1—ep (<2 [ty —opian))|.

Lemma 2.67. For any K >0

lim sup ‘ﬁpoo,l/s,o(ﬂ) - Ws(ﬂl)’ =0.
S0 I (<K

Proof. We have ¥, (1) = @oo,1/,0(11 @ 7c), and therefore

|Poc,1/2,0(10 )*W(Mlﬂ
’djoo 1/50 - P 1/60(1“’1®7T6)|

Ka
/ / —x,z — ) (u(dy,dz) — uy @ m-(dy, dz))
ANXAN

| /\

<= /dm/ y—xz,z—x)|p— m 7| (dy,dz)
ANXAN
= Kq |l — 1 @ 7|y -
The Lemma follows now from Lemma 2.66 ¢).

Next, we define I' : LT (Ax) — [0, 00) by
P(f) = [ doft = exp (-waf (o).
Lemma 2.68. For any K >0
. dv
o | (5) v

(Remark that if I.(v) is finite, then dv < dz)

Proof.

(2)-o0
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/dm exp <—/ als/pS (y—x)v (dy)> — exp <—Z/ ds %( ))‘
/d;z:—/ ds

Now, for s < ¢

1/7rS dv

kg [°
- 2| =2 [Caslom. vl

s = Vpy < lvmsme = vas|lpy + [vTse = viipy
< 8V (vms) + 8y 1.1 s(v)

Now I.(vms) < I.(v) by Lemma 2.66d).
Furthermore, I, (v) < 2el.45(v)/(e + s) < 2I.(v) by Lemma 2.66b).

Therefore, we get ||vms — v||lpy < 8(1 + V2)VKe if I.(v) < Ke. Using this,
the Lemma follows.

We can now finally finish the proof of Proposition 2.59.
Consider a continuous bounded function f: R — R. Then

1
lim - log E (eTf(V*))

T—00 T

= lim lim flogE(exp [Tf(E:(V;))]) (Proposition 2.61)

e—=>0T—00 T

1
= lim sup {f(@oo 1/e,0(1)) — 715(2) (M)} (Proposition 2.64)
e—=0 4 T €

= lim lim sup {f(@ooJ/a,o(/l)) - éfe(z) (#)}

0
K—ooe— 15(2) (H)SEK

1
= lim lim  sup {f(LT/s(ul)) S (u)} (Lemma 2.67).
K—o00e—=0 1(2)( )<eK S

We now use that I. is the projection of IE(Z), namely

I. (v) = inf {15(2) (W) :puy = l/} .

Therefore

1 1
S rf(va) _ _ 1
'rlgnoo T IOgE (6 KlgIclm gg% I. (18})155[{ {f(ws(l/)) IE(V)}

dv 1
=1 1 I E—
Jim tim s (1 () - 2w}

o {1 () 10}

the second equation by Lemma 2.68. This proves now the Proposition 2.59 by
applying the “inverse” of Varadhan’s lemma, also called Bryc’s lemma (see
[43], p. 33).
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2.7 Remarks on the polaron problem

A problem similar in spirit to the considerations in this chapter is connected
with the so-called polaron problem. The questions on path measures are
mathematically open, but I explain what is known and what is conjectured
in this interesting problem. The physical problem is coming from a quan-
tum mechanical discussion of a charged particle, e.g. an electron, which is
moving in a crystal whose lattice sites can be polarized. The electron is then
dragging around it a cloud of polarized lattice points which will influence its
behavior. In particular, the electron moves as having a different mass. This
is the so-called effective mass. I will not discuss the physical background for
which I refer to the Lectures of Feynman [39]. Feynman gave a path integral
formulation of the problem, and questions about the effective mass can be
formulated in terms of a path measure obtained from the Brownian path
by a self-attracting interaction. We are describing actually only the Frohlich
polaron (after the solid-state physicist H. Frohlich). There are other ones
which not all fit into this framework. Here is the path measure, which has
two parameters G, A > 0 :

~ def 1 e~ Alt—s|
Prg . (dw) = 7o P |2 / ds/ dt m—

P is the law of the three-dimensional Brownian motion. The parameter (3
is not of importance and can be scaled away. So we put 8 = 1. The above
form is actually not exactly the one given in Feynman, but it follows by some
trivial rescaling. The parameter \ is 1/a?, where « is the “physical” coupling
parameter between the electron and the lattice points. We are interested
in the case A — 0, which corresponds to the strong coupling limit for the
physical problem.

First remark that the interaction is self-attracting: The new measure fa-
vors paths which, at least on short time scales, are clumping together. (It
should also be remarked that the integral is well defined in three dimensions,
despite of the Coulomb singularity). An important feature is that the inter-
action decays exponentially in |t — s|, so that for fixed A, the interaction is
essentially short range in time. The effect is that the path measure behaves
essentially diffusive (for fixed A), i.e. after Brownian rescaling, Pr  converges
to the Brownian motion with a rescaled diffusion coefficient D (A) > 0, i.e.

P (dw).

im Prp=l = p(DOVD)
Tll_{r;OPT,ApT P ;

where P(*) is the Brownian motion with covariance matrix ¥, and pr (w) Lof

(T-) /YT, as usual. There does not seem to exist a proof of this for the
above model. Spohn ([68]) proved it under some smoothness assumption on
the interaction (not including the Coulomb singularity, however), but I think
there can be no serious doubt that the statement is correct, despite the fact
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that there had been speculations in the physics literature about a roughening
transition.

An interesting problem is to determine the path properties of the above
path measure for A ~ 0, and in particular to determine D (\), but this is
mathematically open. The diffusion constant D ()) is directly related to the
effective mass (see [68]).

An easier problem is to determine the (rough) behavior of the partition
function Zp y, and this has been done in a celebrated result by Donsker and
Varadhan. The argument roughly is that for A small, the interaction, despite
being short range, gets more and more smeared out, and one might guess
that for A — 0 (after T'— 00), the behavior of Z does not much deviate from
the situation where one would take the mean-field model with a Hamiltonian

1 [T T 1
f/'@/'ﬁgggi
T Jo 0 |wt —ws|

This was the content of the Pekar-conjecture and is true:

Theorem 2.69 (Donsker-Varadhan (see [36]).

lim lim — log = hm — logE (exp [ / ds / it ])
A0T 00 T o wb|
dx dy 2 9 1 2}
9 () —-1Vyg i
Hg\lz—l {/RS /]RB |z — y| () g° (y) 9 Vgl

The second equation is in the spirit of the large deviation arguments we
have used above: The mean-field Hamiltonian can be written as

/ ds/ oy =T g @) B @),

from which the last equality “follows” by the Donsker-Varadhan Theorem
2.17 stated in the introduction 2.1, but there are a number of technical dif-
ficulties, e.g. the singularity. However, the the main difficulty was to prove
the first equation for which Donsker and Varadhan developed their “level-3”
large deviation principles. I will not go into that here. The variational prob-
lem above had been discussed in a celebrated paper by Lieb [50] who proved
that there are unique maximizers modulo shifts.

From this result it remains somewhat unclear what to expect for the path
measure. It should however be clear that the problem is in some way related

to the mean-field path measure:
e T 1
—/ck/dp———
T Jo 0 |wy — ws]

The following “result” is then in complete analogy to our Theorem 2.34:

Hmf def 1
PT (d(U) = @exp
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Conjecture 2.70.

lim Pmgot = L9 o2 du
T—o0 T T fg(m) Iz ,

where ¢ is the unique Ls-normed, positive, rotational symmetric solution of
the variational problem in Theorem 2.69. (By an abuse of notation, 6,g>
stands for the measure on R?® with this density).

This has also not been proved, but in my view there can be no serious
doubt that it is correct. A proof could probably be given along the lines of
the proof of Theorem 2.34, with some additional technical problems coming
from the Coulomb singularity. R

Given this “result”, one should believe that our real path measure Pr )
looks at least on scales of order 1/X such that the local empirical measures
are close to some 6,¢*. Based on this, Herbert Spohn in [68] gave a heuristic
derivation of what D (\) should be. This heuristic argument is based on a

number of very simplifying assumptions. First chop the time axis into pieces

LY [(k—1)n,kn) of length 1 <« n <« 1/A, 1 < k < T/n, and consider the

empirical distribution on each of these time slots:

The basic assumption is that these local empirical measures are close to some
shift of g2 :

Ly ~g*(-—0k),

which is certainly plausible if one believes in the above Conjecture 2.70.
Spohns argument is now based on the following further assumptions:

e The only relevant information are these 6, and the fluctuations of Ly p
around g2 (- — 6,) are not playing any role.

e The fact that the end points of the Brownian motion at the end of one of
the time slots is the same as at the beginning of the next slot is not having
any influence.

e The a priori distribution of the 6, is “uniform distribution” on R3.

e The diffusion constant can be evaluated (in the A — 0 limit) by forgetting
anything except the 0y, and expand the Hamiltonian in terms of these
parameters. This evidently leads to a Gaussian theory for the sequence

(ak)kzl .

The rest of the argument is then plain sailing, but it goes without saying
that a justification of the above assumptions is very far from obvious, and
the reader will probably have serious doubts that the answer obtained in this
way is correct (as had I, first). First, we can write the Hamiltonian as
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PR 1
S [ L
2 k=1 I I |ws — wtl
A T/n i
=z _’\”l’“/ds/dt
2 z:: I I s — Wil
o T/n

An o= All— k\/ / 2
N — dx dy x—0)g° (y—10;),
5 E: L 9% (x = 01)g* (y — 1)

where we have used the basic assumption that we can switch from the local
empirical measures to the ¢g?(z — 6.). Expanding now in terms of 6 — 6;, we

get
1
/ dl‘/ dy ——g*(x — 0r)g” (y — 0)
R3 R3 |~”U - y|

1
= dx/ d 2(2)q?
[, e e TR L)
2 2 2 4
z/ dx/ dy—1 g (2)g? (y) — 4 |16x — 01 / gt () dx
R3 R3 |$ R3

The first part is of no relevance as it cancels with the normalization, so we
just have to look at the Gaussian measure

o T/n

1 4 An? _
P B S ST

k,l=1

At the beginning, the path measure is tied down, so that we put 6; ~ 0, and
consider that as a density for 0y, ...,607,,. Then 7/, has covariance matrix

4 An? / g* (z)dx Z k2= Ak
R? k=0

Ar . o o 1! TN
~ - d Td [=——F1+— T
{vn/ng (@) ""”/ we x] 87 [s 97 (2) da

Therefore,

-1
1

A2 9
D(\) = S gt @) e +o(N\?),
as A — 0.

This is of course very far from a mathematical proof. The Spohn-heuristics
has however recently been verified in a much simpler case, namely for a one-
dimensional plane rotator model with a Kac-type interaction by Petermann
[61]. Petermann does not use large deviation theory, but relies on the Griffiths
inequalities which cannot be applied to the polaron, but the result gives some
confidence that the result should be correct.



3. One-dimensional pinning-depinning
transitions

I present in this chapter two results on one-dimensional random walks inter-
acting with a layer. This layer, for the random walk, is just the path identical
to zero. The interaction presented in the two sections are slightly different,
but the effects are quite similar. The first section discusses what in physics
literature is called a wetting transition. Here the layer is acting as a hard
wall in the sense that the random walk has to stay on one side, but there is
also an attractive interaction between the random walk and the wall. There
is a considerable literature around such wetting-transitions, an I present here
only the very most simple case where such a transition occurs. Of consid-
erable interest are cases where the random walk is replaced by a random
surface, and then, of course, similar questions for more complicated random
interfaces, like interfaces in Ising type models, but I leave this out.

In the second section I discuss a pinning-depinning transition for a model
where the interaction with the “wall” is produced by random components
of the random walk, which make the “nodes” of the random walk either be
inclined to be on the positive side of the wall, or on the negative. This is a very
simple model of a polymer chain whose components are either “oil repellent”
or “water repellent”, and which is placed at an interface between water below
and oil above. The components on the polymer chain are randomly placed,
and one would like to know what the effect is.

3.1 Wetting transition for a one dimensional random
walk

We consider a standard random walk in one dimension (discrete time), i.e.
the probability measure P, on

2, def {w=(wg=0,w1,...,wy) : |lw; —wi—1|=1fori=1,...,n},

gives equal weight 27" to all the paths. It will be convenient in this section,
although it is not important at all, to work with a tied down walk. Therefore,
let

an déf {w S '-(2271 FWap = 0}7
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and again, P9 is the uniform distribution. Let 8 > 0 as usual be a positive
coupling parameter. We first discuss only the case with an attraction to the
“wall” (0,...,0). So we define

A 1

2n,B3

2n—1
exp [ﬁ Z 1“)1.:0

i=1

This is an extremely simple object, much simpler, of course, than the models
discussed in Chapter 2. We prove that it localizes for every positive 8 > 0:

Proposition 3.71. For any >0

a)
ef .. 1 1 -
f(B) 4 Jim o log Zon,g = _ilog (1 e zﬁ) < 0.

n—oo 2n
b) There exist m(B) > 0, and A(B) such that

Enp p(wiw;) < A(B) exp(=m(B)]i - j])-

Proof. a) is quite easy. Let ¢ (), I € 2N, be the distribution of the standard
first return time to 0 :

q(20) Y Py (w; #£0,1<j<2—1, wy =0).

The exact distribution is well known, and the generative function is

Zzl(](l)zl—\/l—z27 z < 1.
]

Furthermore

D om>1 220—lo<ly <.z <bmn L1 4 (L = 1j=1)

Zon.g =
2 PZn (WZn :0)

It is well known that the denominator is of order 1/y/n, so we only have to
take care of the numerator, call it Z, g. If 0 < A < v/1 — e 20, we get

i )\QHZQn”g = i eﬁ(m_l) (Z:il q (2’[7,) /\Qn)m
n=1 m=1

1—+1— )2
1—eBy/1— 22

and this diverges for A + /1 — =27, From this, the exact form of f () follows.
We next prove that a) implies b), which is very simple, too.
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Consider the random set I, of “dry” points in {1,...,2n — 1}, i.e. the
points where the random walk visits 0. Clearly, if

A:{élv"'7£7n—1}a O:£0<€1 <~-~<£7n—1 <£m:2n7

then

=[] re;-¢-0)
Jj=1

We set 0l%27](A) e Py, (I = A). Then
ol (A) = Pop(I2n = A)eﬁ(m_l)/ZQﬁn'

Conditionally on {I, = A}, both P9 and Py, s have exactly the same law
on paths just by choosing the excursions independently on all the intervals
[li—1,¢;]. If i > j and AN i, j] # 0, then w; and w; are independent under
this conditioned law. We therefore get

Bonplwiw;) = Y o®(A)EY, (wiw;|I2n = A). (3.1)
A:AN[i,5]=0

If 0 < k < ¢ < 2n, we denote by My, ¢ the set of subsets A of {1,...,2n —1}
such that AN (k,£) =0, AU{0,2n} D {k,(}If A€ My, k <i<j</, then

| B, (wiw;|Tan = A)| < £ — k. (3.2)
Remark also that for A € My, ¢, B C (k,?)

00" A) o™ (B) Zy_, 5

Oml(AuB) =
0
(4UB) )
Therefore
" " fl—k
> = Y Y aE < N
AeMy . AeMy o BC(k,0) {=k.p

Using this together with a) and (3.1) and (3.2) proves b).

We now change the model in a way which leads to an interesting
localization-delocalization transition similar to the one encountered in Sec-
tion 1. This had been observed by M. Fisher [40] in his Boltzmann Lectures.
We just replace the ordinary random walk by one having a “hard wall” con-
dition, meaning that the walk has to stay positive. Therefore, we consider

2f ={we 2, :w; >0V},
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and P; be the uniform distribution on (2 . The large n behavior of Py,
is well known: After Brownian scaling, the path measure converges to that
of a Brownian excursion on a fixed time interval. In particular, E; (w,) is
of order y/n. Taking a coupling parameter 3 > 0 we again introduce an
attractive “polymer-to-wall” interaction by defining

1 2n—1
Pztl,g( ) = Z+g Py (w)exp | B Z lw,=0

One then has the following result

Theorem 3.72. (M. Fisher [40]). There exists Ber > 0 such that

1. For B < Ber
a) fH(B) = hm Llog Z. B =0
b) The path measure converges after Brownian scaling to that of Brownian
eTCuUrsion.
2) For 3> Ber

a) fH(8)>0
b) There exist A(B), m(B) > 0 such that

cov s (winisy) < A(B)exp(~m(B)li - i)
uniformly in n, 1, j.

Proof. 1 prove here only the existence of 3., such that f¥(3) = 0 for 8 < 8,
and fT(8) > 0 for 8 > (.. The exponential decay in 2(b) is more delicate
than in Proposition 3.71. There is a recent paper [45] where these properties
are proved in details, covering even the critical case § = (.

f1(B) is evidently > 0, convex in 8 > 0, and satisfies f(0) = 0. It is also
very easy to see that f(3) > 0 for large enough (3 (just estimate Z;;L“@ from
below by taking the single path which hits 0 at all even times). Therefore,
the only issue is to prove that f7(3) = 0 for small enough 8 > 0. To do this,
remark first that

7+ Do 220<by <. <y <2m 27l H;n:1 q(t; — i)
2. PZOn(Q;n)PQH (an = 0) .

It is well known that PJ,(£23,) ~ 1/n, and therefore, we only have to take
care of the numerator, call it again Z2+n 5 If 0 < A < 1, then one has now,

Z )\anzn 5= Z 9—m ﬁ(m 1) (i f(2n)>\2n>
1 . e -
0 VIT 1= G- viee)

2
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Evidently, if 8 <log 2, then this is finite for all A< 1, and therefore f*(3) = 0.

With this, I close this short discussion on wetting transitions. There are
much more refined results. There are two recent papers [45] and [38], treating
this in much more details. As remarked already, there also had been consider-
able work on such wetting transitions for higher-dimensional surfaces, instead
of the one-dimensional “random string”. Proofs for such surfaces are gener-
ally much more delicate, and many questions which are relatively easy for
stings become much more delicate for surfaces. I don’t want to enter this
topic here, but refer to some of the relevant recent papers [16], [27], [31], [44],
[17].

3.2 A heteropolymer near an interface

We consider in this section an interesting interaction of the random walk (the
“heteropolymer”) with the wall which is produced by a random environment
which is given by a sequence of i.i.d. random variables o; = +1, 1 < i < o0,
which are also independent of the random walk. We denote the law of the o;
by P, but we will allow that the o; are asymmetric: P(o; = 1) = (1 + h)/2,
and we write then P,. Remark that Ej(o;) = h. We always assume that
h > 0, the other case being symmetric. Fixing an environment o € {—1, 1},
we consider a transformed path measure on §2,, by
/Zn,ﬁ,cr
ef

where 8 > 0 is the usual coupling parameter, A;(w) =sign(w; ), (sign(0) e 0),

and
Znpo= Z 27" exp [ﬁZUiAi (w)
i=1

we2,

n
Bopolw) & 27 exp lﬁ S o Aiw)
=1

We are interested in the behavior of ]3717570 for large n which hold almost
surely with respect to to Py,.

This model has been introduced in the physics literature as a very simpli-
fied model for a so called heteropolymer. Think of (i,w;) as a (directed)
polymer on Z2?, modelling a polymer chain whose one end (0,0) is at-
tached at a border of two “liquids”, the heavier one (say water) occupying
(i,§) € Z*, j < 0, and the lighter one (say oil) the upper space (i,7), j > 0.
We think now that our polymer chain (i,w;),7 > 0, is composed of molecules
which are either water-repellent, meaning o; = 1, or oil repellent, i.e. o; = —1,
but we allow that they do not appear in equal amounts, and we assume that
they are randomly placed. The polymer then gets larger weight when the
“energy” — > 0;4; is low.
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S S

S S| S| ﬁ oil
O &
t
+ : water repellant W warer

— @ oil repellant

Fig. 3.1.

The model has been introduced in the physics literature [41], [42], and a
mathematically rigorous treatment started with the paper by Sinai [65], and
then in [15], [66], [4] and most recently by Biskup [8]. The paper [15] treats
actually a slightly different model, where the o; are given as h+0?, and where
the o) are symmetric. This is technically slightly more convenient at some
places. There are also recent papers in the physics literature, see e.g. [60]. The
main question was to discuss the localization-delocalization behavior of the
model. Evidently, the random walk (w;) has essentially two basic strategies
to get its energy lowered. One is just to hang around the “water-oil” interface
and switching to the right side as often as possible. This would mean that the
polymer gets localized near the interface. It is however not evident that this
should be the dominant effect even in the case h = 0, for arbitrary § > 0.
However, this is exactly what Sinai has proved. If h > 0, i.e. when the water
repellent nodes dominate, then the path could just stay on the upper half,
getting dominant satisfaction cheaply, and it is not clear if this is better or
worse than to act more sophisticated by hanging around the interface, and
dipping from time to time into the watery side in order to please the now
fewer oil repellent nodes .

The basic result in [15] is that for any h > 0, there is a transition from
a delocalized region, when [ is small, where it is essentially not worthwhile
for the path to chase after satisfaction for the minority of oil-repellent guys,
and a large (3 region where this is better than to stay lazily in the oil all the
time.

I have to add here that we did not prove in [15] that the path measure
really behaves in this way, but we worked instead purely with free energy
considerations. This is the same as the evaluation in Chapter 2 of the rough
leading order asymptotics which suggests but does not prove how the path
measures really behaves. I hope it had become clear in chapter that to deter-
mine really the behavior of the path measure is usually then still a different
story.

Proposition 3.73. a) For any 6>0,0<h <1

.1
&(B,h) = nh_}n;og log Zp, .0
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exists Pp-a.s. and in L1(IPy) and does not depend on o.
b) @ is convez as a function of
c) Bh < P(B,h) < L.
d) @ is jointly continuous in (5, h).

Proof. a) is a standard application of the subadditive ergodic theorem, and
I refer to [15]. Remark that from L;-convergence, one has

i=1

&(B,h) = li_)m Ej, log E exp

b) This is the standard application using the Holder inequality

Fexp

/\ﬁzn:UiAi + (1 — /\)ﬁzn:azAl]
z:ln N 1:1n .
S E (expﬁZoiAZ) <E6Xp20i4i> .
i=1 i=1

¢) The upper bound is trivial, and the lower bound nearly so, but it is of
crucial importance for what follows:

>F (exp [ﬂi 04
i=1
g
i=1

The second factor is well known to be of order 1/1/n, and therefore plays no
role for the free energy. So the bound follows.

d) is fairly evident from the fact that |> ., 0;4;| < n. If hy < hy, we couple
ol = (0}) with law P"| and 02 with law P2 in the usual way such that
o} < o2 for all i. Then

K2
n n n
1 2 2 1
E OiAi_E o; A SE (07 —0y),
i=1 i=1 i=1

and using that this is < 2hn eventually, w.p. 1, the (Lipshitz) continuity
follows.

n

By o

=1

FEexp

;wi>071SiSn)>

P(w; >0,1<i<n).

From the proof of the lower bound in c¢), it is plausible that the path stays
localized if &(8,h) > [h. That this is actually the case had been proved for
h = 0 by Sinai (who did not prove &(3,0) > 0), and in the full generality
where @(3,h) > Sh by Biskup [8]. The case #(3,h) = h means that there
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is nothing better the path can do than just essentially to stay positive, at
least not on an exponential scale. It is natural to expect that at least in the
interior of this region, this means that the path measure ]5,? "7 except perhaps
for a few steps at the beginning has to concentrate on the “oily” paths. To
be precise, we suspect that the following is true:

Congecture 3.7/. Assume that (0, h) is such that for some £ > 0 (which may
depend on (3, h)) one has ¢(5,h’) = b’ for h > b/ —e. Then

lim sup P> (max{i:w; <0} > K) =0

K—oo p
Py, - a.s.

This would imply that the path, after Brownian rescaling has as limit
distribution the Brownian meander P,-a.s. The above conjecture looks very
natural, there seem however to be considerable difficulties to prove it.

For the rest of this section, we focus entirely on the behavior of @(3, h).

Our first task is to prove that a “delocalized” phase, i.e. a region where
&(, h) = Bh, really exists. As &(8, h) > [h, this amounts to prove an upper
bound for @.

One of the basic tricks in the business of random media is to try to prove
that the “quenched” free energy, i.e. our ¢(3, h) equals the “annealed” one,
if for instance § is small. The annealed free energy is just

.1
nlL)II;O E log]EthﬁJ (33)

which by Jensen dominates lim %Eh log Z,, 3, = P(B, h). It is however easily
n—oo
checked that (3.3) is > Sh for all 8 > 0,0 < h < 1. In fact

]Eth,B,a = COSh(ﬂ)nE exp Zlog (]. + hAl tanh(ﬂ)) s
i=1

and therefore

nl;n;o% log By Z, 5,0 = log(cosh(B) + hsinh(B)) > ho
for h < 1. The last inequality is easily checked: The two sides agree at h = 1,
and then the 1.h.s. is concave and bigger than the r.h.s. at h = 0.

Therefore, we are never able to prove @(3,h) = Sh in this way except
for h = 1, where it is trivial. However, a slight modification of the above
argument leads to
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Proposition 3.75. a) &(5,h) = Sh if

S cosh (28) — 1
sinh (23)

b) If (8, h) satisfies ®(B,h) = Bh, then &(', W) ='W if 8/ > 6,0 > h,
and

r N
G ﬁ_:em + 11_2] <1 (3.4)

Proof. a) The trick is to take a (trivial) part out of Z which is handled in
a “quenched way”, and discuss the other part by an estimate of the type
discussed above.

Zn,g,0 = Eexp

5iUiAi
i=1
= exp [5 i 0

i=1

FEexp

i=1

Evidently, %log of the first factor goes to (Bh, so we have to estimate the
second, which we do by Jensen.

ﬁZUi(Ai - 1)1

< logEH [cosh(B(A; — 1)) + hsinh(B(4A; — 1))]
i=1
< log[(cosh(28) — hsinh(26)) Vv 1] <0,

Ej, log E exp

if h > (cosh (26) — 1) /sinh (20).

b) This comes by a modification of the above argument. If »’ > h, we denote
by (o;) the signs distributed according to P, and then we choose, condition-
ally on (o;) independent 7; with 7, =2 w.p. (b —h)/(1 — h) if o; = —1, and
7; = 0 otherwise. Then o; + 7; is distributed according to Py,. We just write
P for the joint law. Then if 5’ >

Elog FE exp [/6” Z(Ui +7)(4; — 1)]

B> oi(Ai - 1)]

i=1

=E {logEeXp

i=1

x E (exp [Z(ﬁ' — B)oi + B'1i) (A — 1)]
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E (exp [Z(ﬁ' — B)o; + B'1) (4 — 1)]

=1

'
= [Jexp (8 — B)oi(Ai = 1)]
i=1
X {1@_1 +1g,=—1 [h/h 26(Ai-1) | 1— h’] }

1—h 1—h
<1

for any choice of (), (A;) as soon as (3.4) is satisfied. From this, b) follows.

Theorem 3.76. For any 5 > 0 there exists h.(8) € (0,1) such that
&(B,h) > 0 for h < h(B), and ®(B,h) = 0 for h > h.(8). The function
B = he(B) has the following properties:

B — he(B) is continuous and non-decreasing.

a)

b) hm he(B) = 1.

) 1msuph(ﬁ)/ﬁ§1-
d) hmlnf he(8)/5 > 0.

C

Before I start with the proof, some comments. The largest part of [15]
had actually been spent in proving that limg o h.(83)/8 exists in (0,0), a
fact which had been predicted in the physics literature, and “identifying” in
a sense this limit. The proof of this is however rather delicate for reasons
I will indicate below. I cannot give the details of this here. So I stick with
proving just c), d).

One might think that a discussion of the § — 0 limit leads to a pertur-
bation expansion, but this is not the case. The tangent of h.(3) at 5 = 0
seems to be a complicated object and we have not much information about
it except that it exists.

Proof of Theorem 8.76. From Proposition 3.75, we see that for any 8 > 0, if
h is sufficiently close to 1, ®(53, h) = Sh. Remark also that

i=1

and from this we see that ®(3, h) — Bh is non-increasing in h. As it is also
continuous, we conclude that there exists h.(8) € [0,1) such that &(5,h) >
Bhif h < h.(8) and @(8,h) = Bh if h > h.(0).

That 8 — h.(8) is nondecreasing follows from the convexity of @ in
which implies (together with ¢(0,h) = 0) that if #(8,h) — Bh > 0, then
&(B',h) — ['h >0 for all 5/ > .

The continuity of h. follows from Proposition 3.75 which implies that
there are no upward jumps. Therefore, we have proved a).

1
®(B,h) — Bh = lim —Ejlog FEexp
n—oon
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c) is also a consequence of Proposition 3.75 a) and we are left with proving
b) and d). Remark that d) in particular implies h.(8) > 0 for all 5 > 0.

The proofs of b) and d) of course just require a lower bound for . We
follow a standard approach for proving lower bounds in large deviation the-
ory, by changing the measure. Although our new measure is good enough to
produce the lower bounds we are looking for, the reader will realize that (in
contrast to the situation we had in Chapter 2) our reference measures are
not the “correct” ones.

The first observation is that the only relevant information needed about
the random walk are the successive return times to 0: 79 = 0, 7,41 = inf{i >
n; : w; = 0}. Set An; = n; — n;—1. The An; are i.i.d. random variables. As
before, we put ¢(¢) = P(An; = ). The n; define random points, or more
formally random variables Z, k € N, where Z;, = 1 if k = n; for some j, and
Zi, = 0, otherwise.

We define F,, = 0(Z; : k < n). Our partition function has a trivial
recasting in terms of the (Z) process by just integrating out the sign of the
excursion between two successive returns to 0. Put ¢ (z) = log cosh(z), and

n;—1

H,5(Z,0) = Zwﬁz ol +v (8 > e,

= =Nj— 1+1 ’i=’07—n +1
where 7, = max{k < n: g <n}. Then evidently

Znp.o = By exp [Hnp(Z,0)],

)

where EZ refers to taking the expectation for the sequence Z, = 1,
Z1, ..., Zy. Of course, we can introduce now also the Gibbs measure on the
Z-sequence (for fixed o) with this Hamiltonian. This however is a very com-
plicated object, with a wvery complicated many body interaction (for fixed
o). Despite of this fact, we perform just a very simple change of measure,
changing just the distribution f to

L TP

q’(0) = —

v > 0. We write P27 for the corresponding distribution of Zy, ..., Z,. Then
by Jensen

dpPZ?
> exp(E; 7 Hy 5(Z,0) — K(PY|PY)),

APz
Znpo = EZ7 exp <Hnﬁ(z7 o) — log ) (3.5)

where k(p|v) is the usual Kullback-Leibler relative entropy. We now only
have to choose the appropriate v for getting the desired lower bounds. I stick
to proving d) in Theorem 3.76, i.e. prove the bound for 8 ~ 0. The 8 — oo
is not difficult either, and I will leave this to the reader.
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Although this very crude argument is giving a lower bound proving that
h. has a positive slope at 0, it seems clear that it could not produce the
correct tangent (which we know to exist by considerations I will indicate
below).

First, we estimate the entropy

dP”Zﬁ — ﬁ g(n —n; )Z€>n—n7n qv(g)
dPnZ j:]- q ! ]71 Z€>n7177n q(g)

S (L—y) L =22
Therefore

k(P

PZ) < —log(1 = 1) B} (ro + 1) +  log(1 = 7?).

By the optional sampling theorem, we get

1
lim ~E)(rp +1) = ——,
n—ocom 1+~
and therefore
hmsuplk(PZﬁ PZy < ——T log(l—7)+ 11og(1 ) (3.6)
On the other hand, we have
1 1 Tn nj
. . - Z,y > 1 . S nZy .
hnn_1>1olgf nEE" H,(Z,0) > hnn—1>10%f nE” ZEw ﬁ Z oi
Jj=1 i=nj-1+1
v 71
= — —E?E o
e (9320

Now, we would like to apply Jensen to the convex function 1, but estimating
just Ey(5( ;7’:1 o) > (PE( ;7]:1 0;)) = ¥(Bnih) would kill the baby. In
fact, this would mean that we just use that the o; have a average density of
+1 of the right rate, and would not use the fluctuations. The fact that there
is a positive slope of the h.-line is coming from the fluctuations of the o;. We
use a slightly more clever argument, by applying Jensen to the conditioned
law <1P>. ‘2;?1:1 ;> njh). Remark that P(X7, 05 > mh) > eq(h) > 0,
where ¢(h) — 1/2 for h — 0. Therefore

(6 05) 2 ex(h)e | Bk + BB | D (o= h) [3 (o5 —h) >0

j=1 j=1

> c1(h)Y(Bnih + Bez(h)y/m),
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where again, co(h) stays bounded away from 0 as h — 0. Combining this
with (3.6) and (3.5), we get

2(5.h) > ”ffh) B2+ Bes() i)
+i + log(1 ) — 3 log(1 ~7°)
”Cl Z V)23 + Bea(R)VD)
l
+ 1 + 5 log(1 —~) — 3 log(l - 72).

We now let 8 — 0,v = b8, h = af; a,b to be chosen later on. Then we get

lim inf%@(ﬁ, Ba)

c1b dx b2
> = 372 &P [24 P(ax + cav/x) —

a Jo

where we have used that g(¢) ~ ¢;£73/2, if £ — oo along even numbers. We
can still choose b at our liking, so we take b = Ka, and let a — 0. Then

00 2

lim inf dx
uo f, w2 P

2“ ;v] P(az + cov/T)

1
dx
2/0 3/2 (Cgf)d£6>0

Therefore, as K is arbitrary

lim inf hm mf 7@(/6’ ,Ba) =

a—0

In particular,

hrnlnf ﬁ &(6, fa) >

if a is small enough. This proves part d) of the Theorem.
As remarked, I leave part b) to the reader.

The B ~ 0 case is actually somewhat puzzling at first sight. Let us look
at the symmetric h = 0 case. The above argument for the lower bound shows
also that @(3,0) is of order 82. It is in fact true that limg_,o 3720(3,0) ex-
ists and is positive (see Proposition 3.79 below). Choosing ~ in the above
proof of order 3 gives a lower bound of the correct order 3? (but not the
correct constant). The procedure for this lower bound is somewhat naive.
Our reference measure just shortens the excursions from 0 of the random
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walk by changing the distribution ¢. This happens completely regardless what
the o’s are. The ¢’s play only a role for choosing the signs of the excursion.
This aspect is somewhat hidden in the proof above, as we have integrated
out these signs immediately, but the effect can easily be reconstructed. If we
have an excursion, of length ¢, say, and Sy is the sum over the ¢’s, then the
excursion chooses the “oily side” with probability e%¢/(ef5¢ 4 e=F5¢). Now,
as remarked, it is certainly not the case that this measure on paths describes
the true Gibbs measure accurately, but as the lower bound obtained using
this measure is of the correct order, at least for 6 ~ 0, we might guess
that the true Gibbs measure has qualitatively about similar properties. For
the correct Gibbs measure, the ¢’s obviously influence the place where the
excursions occur, and not just the sign as in the above strategy for the lower
bound.

For 8 — 0 the problem rescales to a problem on the Brownian motion.
Let {w;}i>0 be a standard Brownian, playing the réle of the random walk,
and {o;} an independent Brownian motion whose derivative plays the réle
of the random environment. The model we would then naturally have is a
transformation of the law of the first motion by {o:}, a coupling parameter
8 > 0, and a drift parameter h:

T
Pr g p.0(dw) = exp lﬁ/ sign(ws)(do(s) + hds) | Pr(dw)/Zr g0,
0
where Pr(dw) is standard Wiener measure, and we define

~ . 1
D(B,h) = Th_r}récf log Z1 ,h,0-

It is in fact not difficult to prove that 5/5(,6’, h) exists in (0, c0) and has similar
properties as @ introduced in Proposition 3.73. In contrast to @, ® has a very
simple rescaling property which just comes from Brownian rescaling: Setting
o(t) = 05(t/0?), we get

T
Zrghe = Eexp ﬂ/ sign(wy)(do(t) + hds)
0

= Fexp

T/o*
0B /0 sign(ws,2) (d6(s) +ghds)] .

Remark now that if we put &g = wg,2/0, the sign is not influenced by the
scaling, and therefore, we get

(5.h) = é@@ﬂ, oh). (3.7)
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If we put A(h) = &(1, h), we therefore have

B(B, h) = FA(h/B).

It is not difficult to prove along the same lines as in the proof of Theorem 3.76
the following

Proposition 3.77. There is a critical value he > 0 such that

a) A(h)=h if h> he.
b) A(h) > h if h < he.

There seems to be no decent representation of h. for instance as some
solution of a variational problem. Crude arguments like the ones before just
show

A is continuous

A(h) > h for all h

A(h) = h for h large enough
A(0) > 0,

which imply the above proposition. It is however unclear if arguments of the
type described before are able to characterize the correct value h..

Given the value of h., the rescaling property shows that the phase sep-
aration line for the continuous model in the (3, h) plane is just a straight
line.

The following result is quite plausible but the proof is very delicate and
cannot be given here.

Theorem 3.78. The phase separation line h.(3) (for the discrete model) is
differentiable at 0 with derivative h..

I close this section with some comments about the above result.

We expect (but did not prove) that this tangent h. is quite universal and
does not much depend on special properties of the discrete model. Evidently,
changing for instance the law of the random walk or the environment would
lead to different phase separation curves, but the tangent at 0 should not
depend on specific properties of the model.

We believe that there cannot be a particularly easy derivation of the
theorem from standard invariance principles.

There is an intermediate result which is easier to prove, namely conver-
gence of the free energy.

Proposition 3.79.

g%l@wmm:Amy

—0 32
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The proof of this proposition considerably simpler than that of Theorem
3.78, but it is not easy either. The delicacy is that we do not really have good
control of the true Gibbs measure. Essentially, one has to show that this
Gibbs measures goes over, in the § — 0 limit to the corresponding Gibbs
measure for the continuous model, which is as complicated (or even more
s0). Of course, we are not able to prove that on the level of Gibbs measures,
but only on the level of free energies.

Unfortunately, the proposition does not even quite imply the Theorem
3.78, but only half of it. If & < h,, then A(h) > h, and therefore (3, 5h) >
B%h for small enough (3. This shows that the slope of h.(3) at 3 = 0 is at
least h.. However, if h > h, then the Proposition implies only that

hm; (8,h8) = h.

This of course does not imply that @(3, h3)/3? equals h for small enough
B > 0, which is required for the proof of Theorem 3.78. The proof of the last
fact uses repeated applications of much more complicated versions “semian-
nealed” trick, as in the proof of Proposition 3.75, but in only very implicitly
defined situations. I think that the proof is of some methodological interest,
but it is far too involved to be presented here.
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