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Preface

These notes provide extended versions of my lectures in the St Flour meeting
of 1999. The general subject are semiparametric models for replicated exper-
iments, in particular the theory for functionals that are estimable at the rate
equal to the square root of the number of replications. We discuss bounds on
the efficiency of estimators and tests, and methods of constructing efficient
or inefficient estimators and tests, with particular attention for maximum
likelihood estimators. Furthermore, we discuss abstract empirical processes,
which play an important role in the analysis of the estimators.

The ten lectures have a certain overlap with material earlier published in
the books [41] and [42]. A number of proofs have been omitted, because they
can be found in these works. On the other hand, these notes are an attempt
to give a consistent and reasonably self-contained overview of (a part of)
semiparametric statistics, including digressions into empirical process theory,
new examples, and a number of more recent developments.

This area is certainly not complete. To illustrate this point, scattered
through the text we pose some problems whose solutions are presently un-
known (to me).

Our list of references is restricted to the references that are directly rele-
vant to the lectures. In beginning 2000 the Mathematical Reviews gave 415
responses to a query on semiparametric models, so our list does not do jus-
tice to the great amount of work having been done. A general work covering
the subject of semiparametric models, but from a somewhat different point
of view with relatively little attention for the subject of Lectures 5–10, is
the book [3] by Bickel, Klaassen, Ritov and Wellner. This book also has an
extensive list of references.

Notation

We use the wiggly arrow � for weak convergence, also for nonmeasurable
maps: if Xn and X are maps defined on some probability spaces (Ωn,Un,Pn)
with values in a metric space D, then we say that Xn � X if E∗f(Xn) →
Ef(X) for all bounded, continuous functions f : D → R. Here the limit X is
always assumed Borel measurable, but the Xn may be arbitrary maps. The
∗ in E∗f(Xn) is for outer expectation on (Ωn,Un,Pn).

Given a measure space (X ,A, P ) the set Lr(P ) (for r ≥ 1) is the collection
of all measurable functions f :X → R with ‖f‖rP,r: =

∫
|f |r dP <∞.

The wiggly inequality � means “less than equal up to a constant”. The
range and kernel of an operator A are denoted by R(A) and N(A). The space
of all bounded functions z:T → R on a set T is denoted by �∞(T ) and ‖z‖T
is the uniform norm. The set UC(T, ρ) is the set of all ρ-uniformly continuous
functions on T .



1. Lecture:
Introduction, Tangent Sets

In this lecture we introduce basic notation, give a number of examples of
semiparametric models, and define the tangent set of a model.

1.1 Introduction

Throughout the presentation of the general theory we denote by X1, . . . , Xn

the observations. These are measurable maps on some underlying probability
space that we usually need not further specify, and take values in a measurable
space (X ,A). The observations are independent and identically distributed
(i.i.d.), with a distribution P on (X ,A). A model P is a collection of proba-
bility measures on the sample space, to be considered the set of all possible
values of P .

A semiparametric model is one that is neither a parametric model nor a
nonparametric model. This definition is not informative, but could be saved
by giving precise definitions of parametric and nonparametric models. The
nonparametric model P is the set of all probability distributions on P. A para-
metric model is a model that can be smoothly indexed by a Euclidean vector
(“the parameter”). We shall not attempt to make this definition more precise
by specifying “smoothly”, but note that this should cover all classical statisti-
cal models, including exponential families and the uniform distributions. The
concept of a “nonparametric model” is often also used in a more vague sense
of a model that does not essentially restrict the elements P ∈ P. A model
in which all P are assumed to have a second moment or a smooth density
relative to Lebesgue measure is then also considered to be “nonparametric”.

Thus the “definition” says that a semiparametric model is an infinite-
dimensional model that is essentially smaller than the set of all possible
distributions. Even this vague description is not universally accepted. For
instance: the nonparametric model is often considered to be semiparametric
if it is parametrized in an interesting way.

A few examples will give a better idea.

Example 1.1 (Symmetric location). For a given θ ∈ R and a probability den-
sity η on R that is symmetric about 0, let Pθ,η be the measure with density
x → η(x − θ). Then consider the semiparametric model P consisting of all
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measures Pθ,η when θ ranges over R and η ranges over all Lebesgue densities
that are absolutely continuous with finite Fisher information for location:
I(η): =

∫
(η′/η)2 η dλ < ∞. This model arose naturally in the study of non-

parametric testing theory (e.g. rank tests) and was studied long before the
general subject of semiparametric models had been conceived. It turns out to
be a very special model as regards the estimation of the center of symmetry
θ. As we shall see there exist estimators for θ in this model (which cannot
use the form of the unknown η) that are (asymptotically) of the same qual-
ity as the best estimators specially designed to work for a particular η (for
instance as good as the sample mean in the case of normal η and as good as
the median for Laplace η).

Example 1.2 (Partially linear regression). A classical regression model speci-
fies that the conditional mean of a “response variable” Y given a covariate V
is a linear function θTV of the covariate, or a fixed transformation Ψ(θTV )
of it. A nonparametric regression model would replace the linear function by
an arbitrary function, perhaps restricted by being “smooth”. A typical semi-
parametric model would mix these two extremes, for instance by specifying
that the conditional mean is of the form Ψ(θTV + η(W )) for θ ∈ R

d and η
ranging over the class of all twice differentiable functions on the domain of
W , and a fixed function Ψ .

To describe the full model we could specify that the observation is
X = (Y, V,W ) and that (V,W ) has an arbitrary distribution. Next there
are several possibilities to complete the description by specifying the form
of the conditional distribution of Y given (V,W ). One possibility is to spec-
ify only that E(Y |V,W ) = θTV + η(W ). This type of model is popular
among econometricians. A smaller model is obtained by postulating that
Y = θTV + η(W ) + e for e independent of (V,W ) and of mean zero, leaving
the rest of the distribution of e unspecified, assuming it to be normal or sym-
metric. Third, we can also create semiparametric versions of the generalized
linear model. For instance, the response Y could be a 0-1 variable and we
could assume that P(Y = 1|V,W ) is of the form Ψ(θTV + η(W )) for Ψ the
logistic distribution function.

Example 1.3 (Cox). In the Cox model a typical observation is a pair X =
(T,Z) of a “survival time” T and a covariate Z. It is best described in terms
of the conditional hazard function of T given Z.

Recall that the hazard function λ corresponding to a probability density f
is the function λ = f/(1− F ), for F the distribution function corresponding
to f . Simple algebra shows that 1 − F = e−Λ and hence f = λe−Λ, so that
the relationship between f and λ is on-to-one.

In the Cox model the distribution of Z is arbitrary and the conditional
hazard function of T given Z is postulated to be of the form eθ

TZλ(t) for
θ ∈ R

d and λ being a completely unknown hazard function. The parame-
ter θ has an interesting interpretation in terms of a ratio of hazards. For
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instance, if the ith coordinate Zi of the covariate is a 0-1 variable then eθi

is the ratio of the hazards of two individuals whose covariates are Zi = 1
and Zi = 0, respectively, and whose covariates are identical otherwise. This
is one reason for the popularity of the model: the model gives a better fit
to data than a parametric model (obtained for instance by assuming that
the baseline hazard function is of Weibull form), but its parameters are still
easy to interpret. A second reason for its popularity is that statistical proce-
dures for estimating the parameters take a simple form. They were originally
found and motivated by ad-hoc arguments. We shall use the model through-
out these lectures as an illustration and show how the standard estimators
can be derived and analysed by principles that apply equally well to other
semiparametric models.

Example 1.4 (Mixture models). Suppose that x → pθ(x| z) is a probability
density for every pair (θ, z) ∈ Θ×Z for a subset Θ of a Euclidean space and
a measurable space (Z, C). If the map (x, z) → pθ(x| z) is jointly measurable,
then

pθ,η(x) =
∫
pθ(x| z) dη(z)

defines a probability density for every probability measure η on (Z, C). This
mixture density reduces to the density pθ(·| z) when η is degenerate at z.
Hence the model consisting of all mixture densities of this type is considerably
bigger than the “original model”, which is parametric if z is Euclidean and
the map (θ, z) → pθ(·| z) is smooth.

A concrete example of a mixture model is the errors-in-variables model,
which is most easily described structurally, as follows. The observation is a
pair X = (X1, X2), where X1 = Z + e and X2 = gθ(Z) + f for a bivariate
normal vector (e, f) with mean zero and unknown covariance matrix, and a
function gθ that is known up to a parameter θ. Thus X2 is a (possibly nonlin-
ear) regression on a variable Z that is observed with error. The distribution
of Z is unknown. The kernel pθ(·| z) is in this case a multivariate Gaussian
density.

A particular example is the linear errors-in-variables model, for which
θ = (α, β) and gθ(z) = α + βz. This linear model has been studied before
the 1980s, but not from a semiparametric perspective. Semiparametric the-
ory has led to new, more efficient estimators of the regression parameters.
Surprisingly, for most of the nonlinear cases good estimators for θ are still
unknown, and in fact it is unknown if the parameter θ is estimable at

√
n

rate in general. (See [35] and work in progress by the same author.)

Example 1.5 (Random censoring). A “time of death” T is observed only if
death occurs before the time C of a “censoring event” that is independent
of T ; otherwise C is observed. Thus, a typical observation X is a pair of a
survival time and a 0-1 variable, and is distributed as (T ∧ C, 1{T ≤ C}).
If the distributions of T and C are allowed to range over all distributions



1.2 Tangent Spaces and Information 339

on [0,∞], then the distribution of X can be shown to take an arbitrary
form on the sample space X = [0,∞) × {0, 1}. Therefore, this model is a
nonparametric example. Because the interest is usually in the distribution of
T , which is a complicated function of the distribution of X to which much of
the semiparametric machinery applies, the model is usually also considered
semiparametric.

Our lectures aim at developing theory for the estimation and testing of
functionals ψ:P → B defined on a model P and taking values in some Banach
space B (most often R

d). An important example is the functional ψ(Pθ,η) = θ
if the model P = {Pθ,η: θ ∈ Θ, η ∈ H} is indexed by two “parameters” θ and
η. In this case, because apparently the prime interest is in θ, we refer to
η as a “nuisance parameter”. This will not stop us from also considering
the estimation of η. Models with a partitioned parameter (θ, η), with θ finite-
dimensional, are semiparametric models in a strict sense. Begun, Hall, Huang
and Wellner in [1] called them parametric-nonparametric, having in mind that
η would be an element of a nonparametric model.

Our main interest in these lectures is in functionals ψ that allow an asymp-
totic theory analogous to the theory for smooth parametric models. This com-
prises the asymptotic normality of the maximum likelihood estimator, rooted
in the work by Fisher in the 1920s, the asymptotic chisquare distribution of
the likelihood ratio statistic, rooted in the work by Wilks in 1930s, and the
lower bound theory rooted in the work by Cramér and Rao in the 1940s. The
dates might suggest that we are only setting out to obtain a simple extension
of “classical theory” of the first half of the 20th century. There is some truth
to this, but as we shall see, apart from necessitating more mathematical so-
phistication (which word we mean to use in a positive sense), the theory of
semiparametric models turns out to be much richer than the classical theory.

Unfortunately, not all problems have been solved. This is true for the
problems in the restricted realm of the preceding paragraph. It is even more
true for the general theory of semiparametric models, which also contains
many so-called inverse problems. In later lectures we shall indicate some of
the important open questions, to be solved in the next millennium.

In the following section we start by developing a notion of “information”
for estimating ψ(P ) given the model P, which extends the notion of Fisher
information for parametric models.

1.2 Tangent Spaces and Information

To estimate the parameter ψ(P ) given the model P is certainly harder than
to estimate this parameter given that P belongs to a submodel P0 ⊂ P. For
every smooth parametric submodel P0 = {Pθ: θ ∈ Θ} ⊂ P, we can calculate
the Fisher information for estimating ψ(Pθ). Then the “information” for es-
timating ψ(P ) in the whole model is certainly not bigger than the infimum of
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the informations over all submodels. We shall simply define the information
for the whole model as this infimum. A submodel for which the infimum is
taken (if there is one) is called least favourable or a “hardest” submodel.

In most situations it suffices to consider one-dimensional submodels P0.
These should pass through the “true” distribution P of the observations, and
be differentiable at P in an appropriate way.

Definition 1.6. A differentiable path is a map t→ Pt from a neighbourhood
of 0 ∈ [0,∞) to P such that, for some measurable function g:X → R,

∫ [dP 1/2
t − dP 1/2

t
− 1

2g dP
1/2

]2
→ 0.

The function g is called the score function of the submodel {Pt: t ≥ 0} at
t = 0.

The notation in the preceding display is due to Le Cam. The objects dP 1/2
t

can be formalized by introducing an Hilbert space of “square roots of mea-
sures”. Simpler and sufficient for our purposes is to read the display as

∫ [p1/2tt − p1/2t

t
− 1

2g p
1/2
t

]2
dµt → 0,

where, for each t, µt is an arbitrary measure relative to which P and Pt
possess densities pt and ptt. For instance, the measure µt = Pt+P , or a fixed
σ-finite dominating measure for P if it exists. The value of the integral does
not depend on the choice of µt.

In words we say that a differentiable path is a parametric submodel
{Pt: 0 ≤ t < ε} that is differentiable in quadratic mean at t = 0 with score
function g. Letting t→ Pt range over a collection of submodels, we obtain a
collection of score functions, which we call a tangent set of the model P at
P , and denote by ṖP .

Lemma 1.7. Every score function satisfies Pg = 0 and Pg2 <∞.

Proof. For given, arbitrary tn ↓ 0, let pn and p be densities of Ptn and P
relative to a σ-finite dominating measure µ, for instance a convex combination
of the countably many measures Ptn + P . By (1.6) the sequence (

√
pn −√

p)/tn converges in quadratic mean (i.e. in L2(µ)) to 1
2g
√
p. This implies

immediately that g ∈ L2(P ). Furthermore, it implies that the sequence
√
pn

converges in quadratic mean to
√
p. By the continuity of the inner product,

Pg =
∫

1
2g
√
p 2
√
p dµ = lim

∫ (√
pn −

√
p
)

tn

(√
pn +

√
p
)
dµn.

The right side equals (1 − 1)/tn = 0 for every n, because both probability
densities integrate to 1. Thus Pg = 0. �
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It follows that a tangent set can be identified with a subset of L2(P ), up
to equivalence classes. The tangent set is often a linear space, in which case
we speak of a tangent space. Geometrically, we may visualize the model P,
or rather the corresponding set of “square roots of measures” dP 1/2, as a
subset of the unit ball of a Hilbert space (the space L2(µ) if the model is
dominated), and ṖP , or rather the set of all objects 1

2g dP
1/2, as its tangent

set. Note however that we have not defined a tangent set to be equal to the
set of all score functions g that correspond to some differentiable submodel.
For many purposes this “maximal tangent set” is too big, so that we have
given ourselves the flexibility of calling any set of score functions a tangent
set. The drawback will be that in any result obtained later on we must specify
which tangent set we are working with.

Usually, we construct the submodels t→ Pt such that, for every x,

g(x) =
∂

∂t |t=0
log dPt(x).

This pointwise differentiability is not required by (1.6). Conversely, given
this pointwise differentiability we still need to be able to apply a conver-
gence theorem for integrals to obtain (1.6). The following lemma solves most
examples.

Lemma 1.8. If pt is a probability density relative to a fixed measure µ and
t →

√
pt(x) is continuously differentiable in a neighbourhood of 0 and t →∫

ṗ2t/pt dµ is finite and continuous in this neighbourhood, then t → Pt is a
differentiable path.

The differentiability (1.6) is the correct definition for defining information,
because it ensures a type of local asymptotic normality, as shown by the
following lemma.

Lemma 1.9. If the path t→ Pt in P satisfies (1.6), then

log
n∏

i=1

dP1/
√
n

dP
(Xi) =

1√
n

n∑

i=1

g(Xi)− 1
2Pg

2 + oP (1).

Proof. We adopt the notation of the preceding proof, but with tn = 1/
√
n.

The random variable Wni = 2
[√

pn/p(Xi)− 1
]

is with P -probability 1 well-
defined. By (1.6)

var
( n∑

i=1

Wni −
1√
n

n∑

i=1

g(Xi)
)
≤ E

(√
nWni − g(Xi)

)2 → 0,

E
n∑

i=1

Wni = 2n
(∫ √

pn
√
p dµ− 1

)
= −n

∫ [√
pn −

√
p
]2
dµ→ − 1

4Pg
2.

(1.1)
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Therefore, combining the preceding pair of displayed equations, we find

n∑

i=1

Wni =
1√
n

n∑

i=1

g(Xi)− 1
4Pg

2 + oP (1). (1.2)

Next, we express the log likelihood ratio in
∑n

i=1Wni through a Taylor ex-
pansion of the logarithm. If we write log(1 + x) = x − 1

2x
2 + x2R(2x), then

R(x) → 0 as x→ 0, and

log
n∏

i=1

pn
p

(Xi) = 2
n∑

i=1

log
(
1 + 1

2Wni

)

=
n∑

i=1

Wni − 1
4

n∑

i=1

W 2
ni + 1

2

n∑

i=1

W 2
niR(Wni).

(1.3)

As a consequence of the right side of (1.1) , it is possible to write nW 2
ni =

g2(Xi) + Ani for random variables Ani such that E|Ani| → 0. The averages
An converge in mean and hence in probability to zero. Combination with the
law of large numbers yields

n∑

i=1

W 2
ni = (g2)n +An

P→ Pg2.

By the triangle inequality followed by Markov’s inequality,

nP
(
|Wni| > ε

√
2
)
≤ nP

(
g2(Xi) > nε2

)
+ nP

(
|Ani| > nε2

)

≤ ε−2Pg2{g2 > nε2}+ ε−2E|Ani| → 0.

The left side is an upper bound for P
(
max1≤i≤n |Wni| > ε

√
2
)
. Thus the

sequence max1≤i≤n |Wni| converges to zero in probability. By the property
of the function R, the sequence max1≤i≤n

∣
∣R(Wni)

∣
∣ converges in probabil-

ity to zero as well. The last term on the right in (1.3) is bounded by
max1≤i≤n

∣
∣R(Wni)

∣
∣∑n

i=1W
2
ni. Thus it is oP (1)OP (1), and converges in prob-

ability to zero. Combine to obtain that

log
n∏

i=1

pn
p

(Xi) =
n∑

i=1

Wni − 1
4Pg

2 + oP (1).

Together with (1.2) this yields the theorem. �


For defining the “information” for estimating ψ(P ), only those submodels
t→ Pt along which the parameter t→ ψ(Pt) is differentiable are of interest.
A minimal requirement is that the map t→ ψ(Pt) be differentiable at t = 0,
but we need more.
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Definition 1.10. A map ψ:P → B is differentiable at P relative to a given
tangent set ṖP if there exists a continuous linear map ψ̇P :L2(P ) → B such
that for every g ∈ ṖP and a submodel t→ Pt with score function g,

ψ(Pt)− ψ(P )
t

→ ψ̇P g.

This definition requires that the derivative of the map t → ψ(Pt) exists
in the ordinary sense, and also that it has a special representation. (The map
ψ̇P is much like a Hadamard derivative of ψ viewed as a map on the space of
“square roots of measures”.) Our definition is also relative to the submodels
t→ Pt, but we speak of “relative to ṖP ” for simplicity.

In the case that B = R
k the Riesz representation theorem for Hilbert

spaces allows us to write the derivative map ψ̇P in the form of an inner
product. Precisely, there exists a fixed vector-valued, measurable function
ψ̃P :X → R

k,

ψ̇P g = 〈ψ̃P , g〉P =
∫
ψ̃P g dP.

The function ψ̃P is not uniquely defined by the functional ψ and the model P,
since only inner products of ψ̃P with elements of the tangent set are specified,
and the tangent set does not span all of L2(P ). However, it is always possible
to find a candidate ψ̃P whose coordinate functions are contained in lin ṖP ,
the closure of the linear span of the tangent set. This function is unique, and
is called the efficient influence function. It can be found as the projection
of any other “influence function” onto the closed linear span of the tangent
set. Here an influence function will be any measurable function ψ̇P :X → R

whose projection on lin ṖP is the efficient influence function.
In the preceding set-up the tangent sets ṖP are made to depend both

on the model P and the functional ψ. We do not always want to use the
“maximal tangent set”, which is the set of all score functions of differentiable
submodels t→ Pt, because the parameter ψ may not be differentiable relative
to it. According to our definition every subset of a tangent set a tangent set
itself.

The maximal tangent set is a cone: if g ∈ ṖP and a ≥ 0, then ag ∈ ṖP ,
because the path t → Pat has score function ag when t → Pt has score
function g. It is rarely loss of generality to assume that the tangent set we
work with is a cone as well.

Example 1.11 (Parametric model). Consider a parametric model with pa-
rameter θ ranging over an open subset Θ of R

m given by densities pθ with
respect to some measure µ. Suppose that there exists a vector-valued mea-
surable map �̇θ such that, as h→ 0,

∫ [
p
1/2
θ+h − p

1/2
θ − 1

2h
T �̇θ p

1/2
θ

]2
dµ = o

(
‖h‖2

)
.
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Then a tangent set at Pθ is given by the linear space
{
hT �̇θ:h ∈ R

m
}

spanned
by the score functions for the coordinates of the parameter θ.

If the Fisher information matrix Iθ = Pθ �̇θ �̇
T
θ is invertible, then every

map χ:Θ → R
k that is differentiable in the ordinary sense as a map between

Euclidean spaces is differentiable as a map ψ(Pθ) = χ(θ) on the model relative
to the given tangent space. This follows because the submodel t→ Pθ+th has
score hT �̇θ and

∂

∂t |t=0
χ(θ + th) = χ̇θh = Pθ

[(
χ̇θ I

−1
θ �̇θ

)
hT �̇θ

]
.

This equation shows that the function ψ̃Pθ
= χ̇θ I

−1
θ �̇θ is the efficient influ-

ence function.

Example 1.12 (Nonparametric model). Suppose that P consists of all prob-
ability laws on the sample space. Then a tangent set at P consists of all
measurable functions g satisfying

∫
g dP = 0 and

∫
g2 dP <∞. Since a score

function necessarily has mean zero, this is the maximal tangent set.
It suffices to exhibit suitable one-dimensional submodels. For a bounded

function g, consider for instance the exponential family

pt(x) = c(t) exp(tg(x)) p0(x)

or, alternatively, the model pt(x) =
(
1 + tg(x)

)
p0(x). Both models have the

property that, for every x,

g(x) =
∂

∂t |t=0
log pt(x).

By a direct calculation or by using Lemma 1.8, we see that both models
also have score function g at t = 0 in the L2-sense (1.6). For an unbounded
function g, these submodels are not necessarily well-defined. However, the
models have the common structure pt(x) = c(t) k

(
tg(x)

)
p0(x) for a nonneg-

ative function k with k(0) = k′(0) = 1. The function k(x) = 2(1 + e−2x)−1 is
bounded and can be used with any g.

Example 1.13 (Cox model). The density of an observation in the Cox model
takes the form

(t, z) → e−eθT zΛ(t) λ(t) eθ
T z pZ(z).

Differentiating the logarithm of this expression with respect to θ gives the
score function for θ, with x = (t, z),

�̇θ,Λ(x) = z − zeθT zΛ(t).

We can also insert appropriate parametric models s → λs and differentiate
with respect to s. If a is the derivative of log λs at s = 0, then the corre-
sponding score for the model for the observation is
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Bθ,Λa(x) = a(t)− eθ
T z

∫

[0,t]
a dΛ.

Finally, scores for the density pZ are functions b(z). The tangent space con-
tains the linear span of all these functions. Note that the scores for Λ can be
found as an “operator” working on functions a.

Notes Tangent spaces of statistical models as presented here were popu-
larized as a general theory by Pfanzagl in [28], except that Pfanzagl initially
did not define differentiable paths through root-densities, which is an idea
going back to Le Cam in the 1960s (see [15], [16], [18]). The study of tangent
spaces and information in infinite-dimensional models goes further back to
Levit and Koshevnik and Levit (see [20] and [19]) in the mid 1970s, who
however considered mostly nonparametric models.

We are going to use the Cox model as an illustration throughout the ten
lectures. Cox introduced it in [7] and discussed the partial likelihood methods
of estimation in [8].



2. Lecture:
Lower Bounds

In this lecture we state a number of theorems giving lower bounds on the
asymptotic performance of estimators and tests, and make these concrete for
the estimation of a parameter θ in a strict semiparametric model. Some of
the proofs are deferred to Lecture 4.

2.1 Lower Bounds

A “lower bound theorem” in statistics is an assertion that something, esti-
mation or testing, cannot be done better than in some way. The best known
bound is the Cramér-Rao bound for the case of independent sampling from
a parametric model {Pθ: θ ∈ Θ ⊂ R}, which is taught in most introductory
statistics courses.

Fact 2.1. If θ → Pθ is differentiable at θ with score function �̇θ and Tn =
Tn(X1, . . . , Xn) is un unbiased estimator of χ(θ) for a differentiable function
χ: R → R, then under regularity conditions varθ(

√
nTn) ≥ χ′(θ)2/Iθ for

Iθ = varθ �̇θ(X1) the “Fisher information” for θ.

The Cramér-Rao bound is the number χ′(θ)2/Iθ, which depends solely
on the functional χ to be estimated and on the model {Pθ: θ ∈ R}, through
its Fisher information. It turns out that this bound is often not sharp, in
the sense that there may not exist unbiased estimators Tn for which n−1

their variance is equal to the bound. However, the bound is sharp in a cer-
tain asymptotic sense, as n → ∞. One purpose of this lecture is to state
the deep theorems that allow a precise formulation of what it means to be
“asymptotically sharp”, in a semiparametric context.

To motivate the definition of “information” in our semiparametric set-
up, assume for simplicity that the parameter ψ(P ) is one-dimensional. The
Fisher information about t in a differentiable submodel t → Pt with score
function g at t = 0 is Pg2. Thus, the Cramér-Rao bound for estimating the
function t→ ψ(Pt), evaluated at t = 0, is

(
dψ(Pt)/dt

)2

Pg2 =
〈ψ̃P , g〉2P
〈g, g〉P

.
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The supremum of this expression over all submodels, equivalently over all
elements of the tangent set, is a lower bound for estimating ψ(P ) given the
model P, when the “true measure” is P . This supremum can be expressed in
the norm of the efficient influence function ψ̃P .

Lemma 2.2. Suppose that the functional ψ:P → R is differentiable at P
relative to the tangent set ṖP . Then

sup
g∈lin ṖP

〈ψ̃P , g〉2P
〈g, g〉P

= Pψ̃2
P .

Proof. This is a consequence of the Cauchy–Schwarz inequality (Pψ̃P g)2 ≤
Pψ̃2

PPg
2 and the fact that, by definition, the efficient influence function ψ̃P

is contained in the closure of lin ṖP . We obtain equality by choosing g equal
to ψ̃P . �


Thus, the squared norm Pψ̃2
P of the efficient influence function plays

the role of a “smallest variance”. Similar considerations (take linear com-
binations) show that the “smallest covariance” for estimating a higher-
dimensional parameter ψ:P → R

k is given by the covariance matrix Pψ̃P ψ̃TP
of the efficient influence function. The following example shows that the
Cramér-Rao parametric set-up is a special case.

Example 2.3 (Parametric model). Consider a parametric model as in Exam-
ple 1.11. If the Fisher information matrix is invertible and the map χ is
differentiable, then the efficient influence function is given by

ψ̃Pθ
= χ′

θI
−1
θ �̇θ.

Thus the appropriate covariance matrix is Pθψ̃Pθ
ψ̃TPθ

= χ′
θI

−1
θ (χ′

θ)
T . This is

precisely the Cramér-Rao bound.

It is time to give a precise meaning to “smallest covariance”. We shall state
two theorems regarding the estimation problem and one theorem regarding
testing.

For every g in a given tangent set ṖP , write Pt,g for a submodel with
score function g along which the functional ψ is differentiable.

As usual, an estimator Tn is a measurable function Tn(X1, . . . , Xn) of the
observations.

Definition 2.4. A function �: Rk → [0,∞) is subconvex if for all c > 0 the
set

{
y: �(y) ≤ c

}
is convex, symmetric and closed.

Theorem 2.5 (LAM). Let the functional ψ:P → R
k be differentiable at P

relative to the tangent set ṖP with efficient influence function ψ̃P . If ṖP is a
convex cone, then, for any estimator sequence {Tn} and subconvex function
�: Rk → [0,∞),
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sup
I

lim inf
n→∞

sup
g∈I

EP1/
√

n,g
�
(√
n(Tn − ψ(P1/

√
n,g)))

)
≥
∫
� dN

(
0, P ψ̃P ψ̃TP

)
.

Here the first supremum is taken over all finite subsets I of the tangent set.

The purpose of the theorem is to give a lower bound, depending only
on the model and the functional to be estimated, for the liminf of the risk
EP �

(√
n(Tn − ψ(P )

)
, for an arbitrary estimator Tn. A ”best” estimator Tn

can then be defined as one that attains equality (of the limsup and for every
P ∈ P). The theorem is more complicated than that and involves a supremum
over the risk over shrinking neighbourhoods of P . A slightly weaker assertion
makes this clearer. Let ‖ · ‖ be the variation norm.

Corollary 2.6.

inf
δ>0

lim inf
n→∞

sup
‖Q−P‖<δ

EQ�
(√
n(Tn − ψ(Q))

)
≥
∫
� dN

(
0, P ψ̃P ψ̃TP

)
.

Without taking the (local) maximum risk the theorem would fail.
It is attractive that the LAM theorem applies to any estimator, even

though it may blur the distinction between two estimator sequences by eval-
uating only a maximum risk. The next theorem avoids the maximum, but
at the strong price of restricting itself to regular estimator sequences. An
estimator sequence Tn is regular at P for estimating ψ(P ) (relative to ṖP ) if
there exists a probability measure L such that

√
n
(
Tn − ψ(P1/

√
n,g)

) P1/
√

n,g� L, every g ∈ ṖP .

It follows from the definition of weak convergence (or the portmanteau
lemma), that for a regular estimator sequence and bounded, continuous func-
tion � the limiting local maximum risk in the left side of the LAM theorem re-
duces to

∫
� dL. Thus if � is subconvex, this is bounded by

∫
� dN

(
0, P ψ̃P ψ̃TP

)

for any such �. The convolution theorem shows that this discrepancy between
limit and lower bound always results from L being more dispersed than the
normal measure.

Theorem 2.7 (Convolution). Let the functional ψ:P → R
k be differen-

tiable at P relative to the tangent set ṖP with efficient influence function ψ̃P .
Let Tn be regular at P with limit distribution L.

(i) if ṖP is a cone, then
∫
yyT dL(y)− Pψ̃P ψ̃TP is nonnegative definite.

(ii) if ṖP is a convex cone, then there exists a probability measure M such
that L = N

(
0, P ψ̃P ψ̃TP

)
∗M .

Both theorems give the message that the normal distribution with mean
zero and covariance matrix Pψ̃P ψ̃TP is a best limiting distribution for an esti-
mator sequence. We should not take this in a too absolute sense. For instance,
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shrinkage estimators as first invented by Stein in the 1950s are not regular,
and hence are not in the realm of the convolution theorem, and are LAM
for certain loss functions �, because in fact better than the usual estimators
(which are best regular and LAM), but are not asymptotically normal. A
second reason to be careful is that both the LAM and convolution theorems
need assumptions on the form of the tangent set. Nevertheless, so far best
regular estimator sequences have been considered “best” in semiparametric
theory. We adopt the same convention in the following definition.

Definition 2.8. An estimator sequence is asymptotically efficient at P for
estimating the differentiable parameter ψ(P ), if it is regular at P with limit
distribution L = N(0, P ψ̃P ψ̃TP ).

We note that our definition of asymptotic efficiency is not absolute, be-
cause it is relative to a given tangent set, and we permit a variety of tangent
sets. In “practice” one hunts for a pair of a tangent set and estimator se-
quence such that the tangent set is “big enough” and the estimator sequence
“efficient enough” so that the latter is asymptotically efficient according to
the preceding definition. Next one strongly believes that this is all that need
to be said about the problem.

The following lemma shows that efficient estimator sequences must be
asymptotically approximable by an average of the efficient influence function
evaluated at the observations. Because given a sequence y1, y2, . . . the differ-
ence of the averages yn+1 − yn is proportional to the additional term yn+1,
the lemma explains the name “influence function” for ψ̃P .

Lemma 2.9. Let the functional ψ:P → R
k be differentiable at P relative

to the tangent cone ṖP with efficient influence function ψ̃P . A sequence of
estimators Tn is regular at P with limiting distribution N

(
0, P ψ̃P ψ̃TP

)
if and

only if it satisfies

√
n
(
Tn − ψ(P )

)
=

1√
n

n∑

i=1

ψ̃P (Xi) + oP (1). (2.1)

Example 2.10 (Empirical distribution). The empirical distribution is an asymp-
totically efficient estimator if the underlying distribution P of the sample is
completely unknown. To give a rigorous expression to this intuitively obvious
statement, fix a measurable function f :X → R with Pf2 < ∞, for instance
an indicator function f = 1A, and consider Pnf = n−1∑n

i=1f(Xi) as an
estimator for the function ψ(P ) = Pf .

In Example 1.12 it is seen that the maximal tangent space for the non-
parametric model is equal to the set of all g ∈ L2(P ) such that Pg = 0.
For a general function f , the parameter ψ may not be differentiable rela-
tive to the maximal tangent set, but it certainly is differentiable relative to
the tangent space consisting of all bounded, measurable functions g with
Pg = 0. The closure of this tangent space is the maximal tangent set and
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hence working with this smaller set does not change the efficient influence
functions. For a bounded function g we can use the submodel defined by
dPt = (1 + tg) dP , for which ψ(Pt) = Pf + tPfg. Hence the derivative of
ψ is the map g → ψ̇P g = Pfg and the efficient influence function relative
to the maximum tangent set is the function ψ̃P = f − Pf . (The function f
is an influence function; its projection onto the closed, linear span of ṖP is
f − Pf .)

The “optimal asymptotic variance” for estimating P → Pf is equal to
Pψ̃2

P = P (f − Pf)2. The sequence of empirical estimators Pnf is asymp-
totically efficient, because it satisfies (2.1), with the oP (1)-remainder term
identically zero.

The problem of testing a null hypothesis H0:ψ(P ) ≤ 0 versus the alter-
native H1:ψ(P ) > 0 is closely connected to the problem of estimating the
function ψ(P ). It ought to be true that a test based on an asymptotically
efficient estimator of ψ(P ) is, in an appropriate sense, asymptotically opti-
mal. For real-valued parameters ψ(P ) this optimality can be taken in the
absolute sense of an asymptotically (locally) uniformly most powerful test.
For higher-dimensional parameters it is difficult to define a satisfactory no-
tion of asymptotic optimality. We therefore first concentrate on real-valued
functionals ψ:P → R.

Given a model P and a measure P on the boundary of the hypotheses, i.e.
ψ(P ) = 0, we shall study the “local asymptotic power” in a neighbourhood of
P . For every score function g for which ψ̇P g = Pψ̃P g > 0, the corresponding
submodel Pt,g belongs to the alternative hypothesis H1 for (at least) every
sufficiently small, positive t, since ψ(Pt,g) = tP ψ̃P g + o(t) if ψ(P ) = 0. Thus
the measures Ph/√n,g can be viewed as “local alternatives”.

A test function φn is an estimator that takes is values in [0, 1]. The in-
terpretation is that we reject the null hypothesis if the observed value of φn
is 1, do not reject if it is 0, and reject it with probability φn (performing an
additional experiment) if it is between 0 and 1. The following theorem shows
that tests whose probabilities of the first kind (rejecting H0 if it is true) are
bounded above by some level α necessarily have probabilities of the second
kind (not rejecting H0 if it is false) bounded below by a certain Gaussian in-
tegral. Let zα = Φ−1(1− α) be the upper α-quantile of the standard normal
distribution.

Theorem 2.11. Let the functional ψ:P → R be differentiable at P relative
to the tangent space ṖP with efficient influence function ψ̃P . Suppose that
ψ(P ) = 0. Then for every sequence of tests φn such that

sup
Q:ψ(Q)≤0

Qnφn ≤ α ∈ (0, 1),

and every g ∈ ṖP with Pψ̃P g > 0 and every h > 0,
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lim sup
n→∞

Pnh/
√
n,gφn ≤ 1− Φ

(
zα − h

Pψ̃P g

(Pψ̃2
P )1/2

)
.

It is reasonable to expect that a test based on an efficient estimator is
efficient as a test, and this is true, as we now show using the preceding
theorem. Suppose that the sequence of estimators Tn is asymptotically ef-
ficient for ψ(P ) at P and that Sn is a consistent sequence of estimators of
its asymptotic variance Pψ̃2

P . Then the test that rejects H0:ψ(P ) = 0 for√
nTn/Sn ≥ Φ−1(1−α) attains the upper bound of the theorem. The critical

value zα is chosen exactly so that the asymptotic probability of an error of
the first kind is α: PP (

√
nTn/Sn ≥ zα) → α.

Lemma 2.12. Let the functional ψ:P → R be differentiable at P with
ψ(P ) = 0. Suppose that the sequence Tn is regular at P with a N(0, P ψ̃2

P )-
limit distribution. Furthermore, suppose that S2

n
P→ Pψ̃2

P . Then, for every
h ≥ 0 and g ∈ ṖP ,

lim
n→∞

Ph/√n,g
(√nTn

Sn
≥ zα

)
= 1− Φ

(
zα − h

Pψ̃P g

(Pψ̃2
P )1/2

)
.

Proof. By the efficiency of Tn and the differentiability of ψ, the sequence√
nTn converges under Ph/√n,g to a normal distribution with mean hPψ̃P g

and variance Pψ̃2
P . Thus the lemma follows by simple algebra. �


Example 2.13 (Wilcoxon test). Suppose that the observations are two inde-
pendent random samples X1, . . . , Xn and Y1, . . . , Yn from distribution func-
tions F andG, respectively. To fit this two-sample problem in the present i.i.d.
set-up, we pair the two examples and think of (Xi, Yi) as a single observation
from the product measure F × G on R

2. We wish to test the null hypoth-
esis H0:

∫
F dG ≤ 1

2 versus the alternative H1:
∫
F dG > 1

2 . The Wilcoxon
test rejects H0 for large values of

∫
Fn dGn, where Fn and Gn are the em-

pirical distribution functions of the two samples. This test is asymptotically
efficient relative to the model in which F and G are completely unknown.
This gives a different perspective on this test, which is usually presented as
being asymptotically optimal for testing a difference of location in the logis-
tic location-scale family. Actually, this finding is an example of the general
principle that, in the situation that the underlying distribution of the obser-
vations is completely unknown, empirical-type statistics are asymptotically
efficient for whatever they naturally estimate or test. The present conclusion
concerning the Wilcoxon test extends to most other test statistics.

By the preceding lemma, the efficiency of the test follows from the effi-
ciency of the Wilcoxon statistic as an estimator for the function ψ(F ×G) =∫
F dG. We do not give the complete argument for this, but note that it could

be derived from the efficiency of the Fn for F and of Gn for G, which we noted
in Example 2.10, either by applying a preservation theorem of efficiency, or
by similar arguments.
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All three theorems presented in this section give a special role to normal
distributions with covariance matrix Pψ̃P ψ̃TP . We have motivated the covari-
ance matrix by the Cramér-Rao theorem, but the normality is a new element.
That “normal limit distributions are best” was proved for parametric models
in the 1970s by Hájek, and is best explained from Le Cam’s theory of limiting
experiments. This theory shows that the sequence of statistical experiments

(Pn1/√n,g: g ∈ ṖP )

converges in the weak sense of Le Cam to a Gaussian location experiment,
indexed by the tangent set ṖP . We do not discuss this convergence theory
here, but do present a fourth theorem that is more in its spirit.

Theorem 2.14. Suppose that Tn are estimators with values in a separable,
Banach space D such that, for every g ∈ ṖP and a probability measure Lg,

√
n
(
Tn − ψ(P1/

√
n,g)

)
� Lg, under P1/

√
n,g.

If ψ is differentiable at P , relative to ṖP , then for any orthonormal sequence
g1, . . . , gm in L2(P ) there exists a measurable map T : Rm × [0, 1] → D such
that T−ψ̇P (g) is distributed as Lg if the law of T is calculated under the prod-
uct of the normal measure with mean

(
〈g, g1〉P , . . . , 〈g, gm〉P

)
and covariance

the identity and the uniform measure on [0, 1].

The measurable map T in this theorem should be regarded as a random-
ized estimator T = T (X,U) in a statistical experiment that consists of ob-
serving a vector X = (X1, . . . , Xm) of m independent normal variables, with
means 〈gi, g〉P depending on an unknown parameter g and unit variance. The
estimator is allowed to depend also on an auxiliary uniform variable U that
can be generated by the statistician. (For many purposes it is not helpful to
use randomization, but sometimes, as with nonconvex loss functions, it may
be.) The theorem shows that asymptotically the problem of statistical infer-
ence about ψ(P1/

√
n,g) based on a sample of size n from P1/

√
n,g, where g is

unknown, is matched by the problem of estimating ψ̇P (g) based on X. Here
we could restrict g =

∑
i=1 aigi to the linear span of g1, . . . , gm and develop

the parameter of interest ψ̇P (g) =
∑m

i=1 aiψ̇P (gi). Then we are to make infer-
ence about a linear function

∑
aidi based on a normal Nm(a, I)-distributed

vector, which is a well-studied problem with simple solutions. The preceding
theorems are merely specifications to particular problems (minimax estima-
tion, equivariant estimation, or uniformly most powerful testing) of this Gaus-
sian approximation. Using the preceding theorem we could obtain a load of
other concrete statements on asymptotic lower bounds, provided we can solve
the particular question in the Gaussian experiment. For instance, we can de-
rive statements for tangent sets that do not satisfy the convexity or linearity
requirements of the preceding theorems; we can consider loss functions that
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are not subconvex; or we can consider testing of higher-dimensional function-
als. The problem with testing a parameter of dimension 2 or higher is that
no uniformly most powerful, unbiased test does exist and hence an optimal
test can only be defined through restricting the class of tests or working with
envelope power functions. Appropriate restriction through invariance will of
course lead to the same conclusion that tests best on best regular estimator
sequences are best invariant tests.

Rather than using finitely many functions g1, . . . , gm, we could have used
an infinite sequence g1, g2, . . . (unless L2(P ) is finite dimensional). The anal-
ogous result will be true. However, the analysis of an infinite-dimensional
Gaussian experiment will proceed by finite-dimensional approximation, so
not much is gained by this formulation. We have a similar reservation against
a representation of the Gaussian experiment using a Brownian motion with
drift (as in [22]). It is impossible to perform direct calculations on risks of
estimators which are measurable functions of Brownian motion and hence it
will be necessary to approximate the experiment by finite-dimensional ones
in any case.

Proofs of generalizations of the preceding theorems are given in Lecture 4.

2.2 Efficient Score Functions

A function ψ(P ) of particular interest is the parameter θ in a semiparametric
model {Pθ,η: θ ∈ Θ, η ∈ H}. Here Θ is an open subset of R

k and H is
an arbitrary set, typically of infinite dimension. The information bound for
the functional of interest ψ(Pθ,η) = θ can be conveniently expressed in an
“efficient score function”.

As submodels, we use paths of the form t → Pθ+ta,ηt , for given paths
t → ηt in the parameter set H. The score functions for such submodels (if
they exist) will typically have the form of a sum of “partial derivatives” with
respect to θ and η. If �̇θ,η is the ordinary score function for θ in the model
where η is fixed, then we expect

∂

∂t |t=0
log dPθ+ta,ηt

= aT �̇θ,η + g.

The function g has the interpretation of a score function for η when θ is fixed,
and will run through an infinite-dimensional set if we are concerned with a
“true” semiparametric model. We refer to this set as the tangent set for η,
and denote it by ηṖPθ,η

.
The parameter ψ(Pθ+ta,ηt) = θ+ta is certainly differentiable with respect

to t in the ordinary sense, but is, by definition, differentiable as a parameter
on the model if and only if there exists a function ψ̃θ,η such that

a =
∂

∂t |t=0
ψ(Pθ+ta,ηt

) = 〈ψ̃θ,η, aT �̇θ,η + g〉Pθ,η
, a ∈ R

k, g ∈ ηṖPθ,η
.
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Setting a = 0, we see that ψ̃θ,η must be orthogonal to the tangent set ηṖPθ,η

for the nuisance parameter. Define Πθ,η as the orthogonal projection onto
the closure of the linear span of ηṖPθ,η

in L2(Pθ,η).

Definition 2.15. (i) The efficient score function for θ is �̃θ,η = �̇θ,η −
Πθ,η �̇θ,η.

(ii) The efficient information matrix for θ is Ĩθ,η = Pθ,η �̃θ,η �̃
T
θ,η.

Lemma 2.16. Suppose that for every a ∈ R
k and every g ∈ ηṖPθ,η

there
exists a path t→ ηt in H such that

∫ [dP 1/2
θ+ta,ηt

− dP 1/2
θ,η

t
− 1

2 (aT �̇θ,η + g) dP 1/2
θ,η

]2
→ 0. (2.2)

If Ĩθ,η is nonsingular, then the functional ψ(Pθ,η) = θ is differentiable at Pθ,η
relative to the tangent set ṖPθ,η

= lin �̇θ,η + ηṖPθ,η
with efficient influence

function ψ̃θ,η = Ĩ−1
θ,η �̃θ,η.

Proof. The given set ṖPθ,η
is a tangent set by assumption. The function ψ is

differentiable with respect to this tangent set since

〈Ĩ−1
θ,η �̃θ,η, a

T �̇θ,η + g〉Pθ,η
= Ĩ−1

θ,η〈�̃θ,η, �̇Tθ,η〉Pθ,η
a = a.

The last equality follows, because the inner product of a function and its
orthogonal projection is equal to the square length of the projection. Thus,
we may replace �̇θ,η by �̃θ,η. �


Consequently, an estimator sequence is asymptotically efficient for esti-
mating θ if

√
n(Tn − θ) =

1√
n

n∑

i=1

Ĩ−1
θ,η �̃θ,η(Xi) + oPθ,η

(1).

This is very similar to the situation for efficient estimators in parametric
models. The only difference is that the ordinary score function �̇θ,η is re-
placed by the efficient score function (and similarly for the informations).
The intuitive explanation is that a part of the score function for θ can also
be accounted for by score functions for the nuisance parameter η. When the
nuisance parameter is unknown, a part of the information for θ is “lost”, and
this corresponds to a “loss” of a part of the score function.

Example 2.17 (Symmetric location). Suppose that the model consists of all
densities x→ η(x−θ) with θ ∈ R and the “shape” η symmetric about 0 with
finite Fisher information for location Iη. Thus, the observations are sampled
from a density that is symmetric about θ.

By the symmetry, the density can equivalently be written as η
(
|x−θ|

)
. It

follows that any score function for the nuisance parameter η is necessarily a
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function of |x−θ|. This suggests a tangent set containing functions of the form
a(η′/η)(x− θ) + b

(
|x− θ|

)
. It is not hard to show that all square-integrable

functions of this type with mean zero occur as score functions in the sense of
(2.2).

A symmetric density has an asymmetric derivative and hence an asym-
metric score function for location. Therefore, for every b,

Eθ,η
η′

η
(X − θ) b

(
|X − θ|

)
= 0.

Thus, the projection of the θ-score onto the set of nuisance scores is zero and
hence the efficient score function coincides with the ordinary score function.
This means that there is no difference in information about θ whether the
form of the density is known or not known, as long as it is known to be
symmetric. This surprising fact was discovered by Stein in 1956, and has
been an important motivation in the early work on semiparametric models.

Even more surprising is that the information calculation is not misleading.
There exist estimator sequences for θ whose definition does not depend on
η that have asymptotic variance I−1

η under any true η! We shall see this in
Lecture 8.

Example 2.18 (Regression). Let gθ be a given set of functions indexed by a
parameter θ ∈ R

k, and suppose that a typical observation (X,Y ) follows the
regression model

Y = gθ(X) + e, E(e|X) = 0.

This model includes the logistic regression model, for gθ(x) = 1/(1 + e−θT x).
It is also a version of the ordinary linear regression model. However, in this
example we do not assume that X and e are independent, but only the rela-
tions in the preceding display, apart from qualitative smoothness conditions
that ensure existence of score functions, and the existence of moments. We
shall write the formulas assuming that (X, e) possesses a density η. Thus, the
observation (X,Y ) has a density η

(
x, y−gθ(x)

)
, where η is (essentially) only

restricted by the relations
∫
eη(x, e) de ≡ 0.

Since any perturbation ηt of η within the model must satisfy this same
relation

∫
eηt(x, e) de = 0, it is clear that score functions for the nuisance

parameter η are functions a
(
x, y − gθ(x)

)
that satisfy

E
(
ea(X, e)|X) =

∫
ea(X, e) η(X, e) de
∫
η(X, e) de

= 0.

By the same argument as for nonparametric models all square-integrable
functions of this type that have mean zero are score functions. Since the
relation E

(
ea(X, e)|X) = 0 is equivalent to the orthogonality in L2(η) of

a(x, e) to all functions of the form eh(x), it follows that the set of score
functions for η is the orthocomplement of the set eH, of all functions of the
form (x, y) →

(
y− gθ(x)

)
h(x) within L2(Pθ,η), up to centering at mean zero.
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Thus, we obtain the efficient score function for θ by projecting the ordi-
nary score function �̇θ,η(x, y) = −η2/η(x, e)ġθ(x) onto eH. The projection of
an arbitrary function b(x, e) onto the functions eH is a function eh0(x) such
that Eb(X, e)eh(X) = Eeh0(X)eh(X) for all measurable functions h. This
can be solved for h0 to find that the projection operator takes the form

ΠeHb(X, e) = e
E
(
b(X, e)e|X

)

E(e2|X)
.

This readily yields the efficient score function

�̃θ,η(X,Y ) = − eġθ(X)
E(e2|X)

∫
η2(X, e)e de∫
η(X, e) de

=

(
Y − gθ(X)

)
ġθ(X)

E(e2|X)
.

The efficient information takes the form Ĩθ,η = E
(
ġθ ġ

T
θ (X)/E(e2|X)

)
.

Notes The study of the symmetric location model has a long history. That
the scores for the location parameter and the shape parameter were orthog-
onal was first noted by Stein in [34]. Several authors subsequently worked on
defining adaptive estimators. A summary approach was given by Bickel in
[2], which provided a starting point to extensions to more general models.

The convolution and minimax theorems for parametric models are due
to Hájek, see [10] and [11]. The semiparametric versions given here are, in a
way, simple extensions of these theorems. The role of convexity or linearity
of tangent spaces for these theorems was investigated in [36], which is also
the basis of Theorem 2.15.

Efficient score functions were presented by Begun, Hall, Huang and Well-
ner, in [1], as an alternative to the (more general) presentations by Levit and
Pfanzagl.



3. Lecture:
Calculus of Scores

In this lecture we introduce a “calculus of scores”, which is a useful way of
finding efficient influence functions in models that are parametrized.

3.1 Score and Information Operators

The method to find the efficient influence function of a parameter given in
the preceding lecture is the most convenient method if the model can be
naturally partitioned in the parameter of interest and a nuisance parameter.
For many parameters such a partition is impossible, or, at least, unnatural.
Furthermore, even in semiparametric models it can be worthwhile to derive
a more concrete description of the tangent set for the nuisance parameter, in
terms of a “score operator”.

Consider first the situation that the model P = {Pη: η ∈ H} is indexed by
a parameter η that is itself a probability measure on some measurable space.
We are interested in estimating a parameter of the type ψ(Pη) = χ(η) for a
given function χ:H → R

k on the model H.
The model H gives rise to a tangent set Ḣη at η. If the map η → Pη is

differentiable in an appropriate sense, then its derivative will map every score
b ∈ Ḣη into a score g for the model P. To make this precise, we assume that a
smooth parametric submodel t→ ηt induces a smooth parametric submodel
t→ Pηt , and that the score functions b of the submodel t→ ηt and g of the
submodel t→ Pηt are related by

g = Aηb.

Then AηḢη is a tangent set for the model P at Pη. Since Aη turns scores for
the model H into scores for the model P it is called a score operator. Ahead
it is seen that if η and Pη are the distributions of an unobservable Y and an
observable X = m(Y ), respectively, then the score operator is a conditional
expectation. More generally, it can be viewed as a derivative of the map
η → Pη. We assume that Aη, as a map Aη: lin Ḣη ⊂ L2(η) → L2(Pη), is
continuous and linear.

Next, assume that the function η → χ(η) is differentiable with influence
function χ̃η relative to the tangent set Ḣη. Then, by definition, the function
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ψ(Pη) = χ(η) is pathwise differentiable relative to the tangent set ṖPη
=

AηḢη if and only if there exists a vector-valued function ψ̃Pη
such that

〈ψ̃Pη , Aηb〉Pη =
∂

∂t |t=0
ψ(Pηt) =

∂

∂t |t=0
χ(ηt) = 〈χ̃η, b〉η, b ∈ Ḣη.

This equation can be rewritten in terms of the adjoint score operator
A∗
η:L2(Pη) → lin Ḣη. By definition this satisfies 〈h,Aηb〉Pη = 〈A∗

ηh, b〉η for
every h ∈ L2(Pη) and b ∈ Ḣη. Note that we define A∗

η to have range lin Ḣη, so
that it is the adjoint of Aη: Ḣη → L2(Pη). This is the adjoint of an extension
Aη:L2(η) → L2(Pη) followed by the orthogonal projection onto lin Ḣη.

Fact 3.1. Every continuous, linear map A: H1 → H2 between two Hilbert
spaces has an adjoint map A∗: H2 → H1, which is a continuous, linear map
that satisfies and is uniquely determined by the equations 〈A∗h2, h1〉1 =
〈h2, Ah1〉2 for every hi ∈ Hi. If A is considered the restriction to H1 ⊂ H̃1
of a continuous, linear map Ã: H̃1 → H2 with domain a Hilbert space that
contains H1 isometrically, then A∗ = ΠÃ∗ for Π: H̃1 → H1 the orthogonal
projection of H̃1 onto H1.

The preceding display is equivalent to

A∗
ηψ̃Pη

= χ̃η. (3.1)

We conclude that the function ψ(Pη) = χ(η) is differentiable relative to the
tangent set ṖPη = AηḢη if and only if this equation can be solved for ψ̃Pη ;
equivalently, if and only if χ̃η is contained in the range of the adjoint A∗

η.
Since A∗

η is not necessarily onto lin Ḣη, not even when it is one-to-one, this
is a condition!

For multivariate functionals equation (3.1) is to be understood coordinate-
wise. Two solutions ψ̃Pη of (3.1) can differ only by an element of the ker-
nel N(A∗

η) of A∗
η, which is the orthocomplement R(Aη)⊥ of the range of

Aη: lin Ḣη → L2(Pη). Thus, there is at most one solution ψ̃Pη that is con-
tained in R(Aη) = linAηḢη, the closure of the range of Aη, as required.

If χ̃η is contained in the smaller range of A∗
ηAη, then equation (3.1) can

be solved, of course, and the solution can be written in the attractive form

ψ̃Pη
= Aη(A∗

ηAη)
−χ̃η. (3.2)

Here A∗
ηAη is called the information operator, and (A∗

ηAη)
− is a “generalized

inverse”. (Here this will not mean more than that b = (A∗
ηAη)

−χ̃η is a solution
to the equation A∗

ηAηb = χ̃η.) The following lemma shows that this attractive
form is available for any functional χ if the range of the score operator is
closed, a situation which unfortunately fails often.
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Fact 3.2. Let A: H1 → H2 be a continuous linear map between two Hilbert
spaces. Then equivalent are:

(i) R(A) is closed.
(ii) R(A∗) is closed.
(iii) R(A∗A) is closed.
(iv) R(A∗A) = R(A∗).

Fact 3.3. Let A: H1 → H2 be a continuous linear map between two Hilbert
spaces. Then

(i) N(A) = R(A∗)⊥.
(ii) N(A∗) = R(A)⊥.

Furthermore, the map A∗A: H1 → H1 is one-to-one, onto and has a contin-
uous inverse if and only if A is one-to-one and R(A) is closed if and only if
A∗A is one-to-one and onto.

So far we have assumed that the parameter η is a probability distribution,
but this is not necessary. Consider the more general situation of a model
P = {Pη: η ∈ H} indexed by a parameter η running through an arbitrary set
H. Let Hη be a subset of a Hilbert space that indexes “directions” b in which
η can be approximated within H. Suppose that there exist continuous, linear
operators Aη: lin Hη → L2(Pη) and χ̇η: lin Hη → R

k, and for every b ∈ Hη a
path t→ ηt such that, as t ↓ 0,

∫ [dP 1/2
ηt − dP 1/2

η

t
− 1

2Aηb dP
1/2
η

]2
→ 0,

χ(ηt)− χ(η)
t

→ χ̇ηb.

By the Riesz representation theorem for Hilbert spaces, the “derivative” χ̇η
has a representation as an inner product χ̇ηb = 〈χ̃η, b〉Hη

for an element
χ̃η ∈ lin H

k
η. The preceding discussion can be extended to this abstract set-

up.

Theorem 3.4. The map ψ:P → R
k given by ψ(Pη) = χ(η) is differentiable

at Pη relative to the tangent set AηHη if and only if each coordinate function
of χ̃η is contained in the range of A∗

η:L2(Pη) → lin Hη. The efficient influence
function ψ̃Pη

satisfies (3.1). If each coordinate function of χ̃η is contained in
the range of A∗

ηAη: lin Hη → lin Hη, then it also satisfies (3.2).

Proof. By assumption, the set AηHη is a tangent set. The map ψ is differen-
tiable relative to this tangent set (and the corresponding submodels t→ Pηt

)
by the argument leading up to (3.1). �
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The condition (3.1) is odd. By definition, the influence function χ̃η is
contained in the closed linear span of Hη and the operator A∗

η maps L2(Pη)
into lin Hη. Therefore, the condition is certainly satisfied if A∗

η is onto. There
are two reasons why it may fail to be onto. First, its range R(A∗

η) may be
a proper subspace of lin Hη. Since b ⊥ R(A∗

η) if and only if b ∈ N(Aη),
this can happen only if Aη is not one-to-one. This means that two different
directions b may lead to the same score function Aηb, so that the information
matrix for the corresponding two-dimensional submodel is singular. A rough
interpretation is that the parameter is not locally identifiable and it is not
surprising that we have a problem. Second, the range space R(A∗

η) may be
dense, but not closed. Then for any χ̃η there exist elements in R(A∗

η) that are
arbitrarily close to χ̃η, but (3.1) may still fail. This is harder to understand,
but it happens quite often. The following theorem shows that failure has
serious consequences.

Theorem 3.5. In the above setting, if χ̃η /∈ R(A∗
η), then

(i) there exists no estimator sequence for χ(η) that is regular at Pη.
(ii)

sup
b∈Hη

〈χ̃η, b〉2η
‖Aηb‖2Pη

= ∞.

Proof. We shall only give the proof of (ii). (See [38] for a proof of (i).) The
proof of (ii) can be carried out using the spectral decomposition of the in-
formation operator and spectral calculus. (See for instance [33] for this back-
ground.) For simplicity of notation, we drop the index η throughout the proof.
The spectral decomposition takes the form A∗A =

∫
λ dPλ for λ → Pλ the

spectral resolution of the nonnegative, self-adjoint operator A∗A. (In simple
cases, the formal integral is a sum over the (countable many, nonnegative)
eigenvalues of A∗A and the Pλ are orthogonal projections on the correspond-
ing eigenspaces. In general, the spectral resolution may be continuous.) Next
the operator

(A∗A)1/2 =
∫ √

λ dPλ

is a square root in that it is nonnegative, self-adjoint and has A∗A as its
square. The adjoint A∗ can be expressed in this square root through the
polar decomposition A∗ = (A∗A)1/2U , for U :L2(P ) → R((A∗A)1/2) =
N((A∗A)1/2)⊥ an operator whose restriction to R(A) is an isometry and has
R(A)⊥ as its kernel. It follows that the ranges of A∗ and (A∗A)1/2 are iden-
tical.

The spectral calculus also gives a meaning to integrals of the type∫
f(λ) dPλ for general functions f . Such expressions define operators, which

can be manipulated with rules such as
∫
f(λ) dPλ

∫
g(λ) dPλ =

∫
f(λ)g(λ) dPλ.

Furthermore, to every b ∈ H corresponds a spectral measure µb, which is a
measure on the interval [0, ‖A∗A‖] containing the spectrum with the property
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that 〈
∫
f(λ) dPλb, b〉 =

∫
|f |2 dµb for every function f that is well-behaved

on the spectrum of A∗A.
We then obtain that

R(A∗) = R
(
(A∗A)1/2

)
=
{
b:
∫
λ−1 dµb(λ) <∞

}
.

Therefore, if χ̃ is not contained in the range of A∗, then we must have at
least one of

µχ̃{0} > 0, or
∫

1λ>0λ
−1 dµχ̃(λ) = ∞.

In the first case we evaluate the quotient in (ii) at b = P{0}χ̃ =
∫

{0} dPλχ̃.
For this choice we have by spectral calculus that A∗Ab =

∫
λ dPλP{0}χ̃ =∫

1{0}(λ)λ dPλχ̃ = 0, whereas 〈χ̃, b〉 = µχ̃{0} > 0. This yields the quotient (>
0)2/0 in (ii). In the case that the second possibility in the preceding display is
valid we evaluate the quotient in (ii) at the sequence bn =

∫
1λ≥1/nλ

−1 dPλχ̃.
For this choice we have by spectral calculus that A∗Abn =

∫
1λ≥1/n dPλχ̃→

χ̃, whereas 〈χ̃, bn〉 =
∫

1λ≥1/nλ
−1 dµχ̃(λ) → ∞. Thus the quotient in (ii) is

infinite. �


3.1.1 Information Loss Models

Suppose that a typical observation is distributed as a measurable transfor-
mation X = m(Y ) of an unobservable variable Y . Assume that the form of
m is known and that the distribution η of Y is known to belong to a class
H. This yields a natural parametrization of the distribution Pη of X. A nice
property of differentiability in quadratic mean is that it is preserved under
“censoring” mechanisms of this type: if t → ηt is a differentiable submodel
of H, then the induced submodel t → Pηt

is a differentiable submodel of
{Pη: η ∈ H}. Furthermore, the score function g = Aηb (at t = 0) for the
induced model t→ Pηt

can be obtained from the score function b (at t = 0)
of the model t→ ηt by taking a conditional expectation:

Aηb(x) = Eη
(
b(Y )|X = x

)
.

If we consider the scores b and g as the carriers of information about t in the
variables Y ∼ ηt and X ∼ Pηt , respectively, then the intuitive meaning of
the conditional expectation operator is clear. The information contained in
the observation X is the information contained in Y diluted (and reduced)
through conditioning.

Lemma 3.6. Suppose that {ηt: 0 < t < 1} is a collection of probability mea-
sures on a measurable space (Y,B) such that for some measurable function
b:Y → R

∫ [dη1/2
t − dη1/2

t
− 1

2b dη
1/2

]2
→ 0.
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For a measurable map m:Y → X let Pη be the distribution of m(Y ) if Y has
law η and let Aηb(x) be the conditional expectation of b(Y ) given m(Y ) = x.
Then ∫ [dP 1/2

ηt − dP 1/2
η

t
− 1

2Aηb dP
1/2
η

]2
→ 0.

Proof. For simplicity of notation we assume that the measures ηt and η have
densities ht and h relative to a fixed probability measure ν. (If this is not
the case, choose ν = νt = 1

2 (ηt + η) dependent on t and add t’s throughout
the following.) Furthermore, we assume that b is uniformly bounded by M .
(If this is not the case truncate b at Mt → ∞ and add t’s in the following.)
Then νu2

t → 0 for

ut =
h

1/2
t − h1/2

t
− 1

2bh
1/2.

Define µ to be the law of X = m(Y ) if Y is distributed according to ν. Then

pt(x) = Eν
(
ht(Y )|X = x

)
, and p(x) = Eν

(
h(Y )|X = x

)

are densities of Pηt
and Pη with respect to µ. In case of the second one, this

follows from the equations

Pη(A) =
∫

1A
(
m(y)

)
dη(y) = Eν1A

(
m(Y )

)
h(Y )

= Eν1A(X)Eν
(
h(Y )|X

)
=
∫

A

p(x) dµ(x).

By a similar argument, we have, almost surely under Pη,

Aηb(X) p(X) = Eν
(
b(Y )h(Y )|X

)
.

From the definition of ut we obtain that

ht = h+ tbh+ t2u2
t + t(tutbh1/2 + 2uth1/2 + 1

4 tb
2h).

Evaluating these functions at Y and taking conditional expectations with
respect to X, we find

pt = p+ t(Aηb) p+ c+ d,

where c and d satisfy

c(X) = t2Eν
(
u2
t (Y )|X

)
,

|d(X)|2 = t2Eν
((
tutbh

1/2 + 2uth1/2 + 1
4 tb

2h
)
(Y )|X

)2

� t2Eν
((
uth

1/2(tM + 1) + tM2h
)
(Y )|X

)2

� t2
(
Eν
(
u2
t (Y )|X

)
(tM + 1)2 + t2M4p(X)

)
p(X),
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by the Cauchy–Schwarz inequality. By a Taylor expansion (see Lemma 3.7),
we conclude that on the set A = {p > 0}

[p1/2t − p1/2
t

− 1
2 (Aηb)p1/2

]2
� Eν

(
u2
t (Y )|X

)
(tM + 1)2 + t2M4p(X)

+ Eν
(
u2
t (Y )|X

)
+
∣
∣
∣

1√
1−Mt

− 1
∣
∣2M2p(X).

The integral over the set A of this function relative to µ converges to zero as
t→ 0.

Finally, the equation η
(
m−1(Ac)

)
= Pη(Ac) = 0 implies that Pηt

(Ac) =
ηt
(
m−1(Ac)

)
= o(t2), because ν(tu2

t1B) = ηt(B) if η(B) = 0. Thus the
integral of the preceding display over the set Ac converges to zero as well.
�


Lemma 3.7. For any real numbers a, b, c, d with a > 0, b/a ≤ ε < 1, c ≥ 0
and a+ b+ c+ d ≥ 0

∣
∣
∣
√
a+ b+ c+ d−

√
a− 1

2
b√
a

∣
∣
∣
2
≤ 3d2

a(1− ε) + 3c+
∣
∣
∣

1√
1− ε

− 1
∣
∣
∣
2 b2

a
.

If we consider Aη as an operator Aη:L2(η) → L2(Pη), then its adjoint
A∗
η:L2(Pη) → L2(η) is a conditional expectation operator also, reversing the

roles of X and Y ,
A∗
ηg(y) = Eη

(
g(X)|Y = y

)
.

This follows since, by the usual rules for conditional expectations,

EE
(
g(X)|Y

)
b(Y ) = Eg(X)b(Y ) = Eg(X)E

(
b(Y )|X

)
.

In the “calculus of scores” of Theorem 3.4 the adjoint is understood to be the
adjoint of Aη: Hη → L2(Pη) and hence to have range lin Hη ⊂ L2(η). Then
the conditional expectation in the preceding display needs to be followed by
the orthogonal projection onto lin Hη.

Example 3.8 (Mixtures). Suppose that a typical observation X possesses a
conditional density p(x| z) given an unobservable variable Z = z. If the un-
observable Z possesses an unknown probability distribution η, then the ob-
servations are a random sample from the mixture density

pη(x) =
∫
p(x| z) dη(z).

This is a missing data problem if we think of X as a function of the pair
Y = (X,Z). A score for the mixing distribution η in the model for Y is a
function b(z). Thus, a score space for the mixing distribution in the model
for X consists of the functions
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Aηb(x) = Eη
(
b(Z)|X = x

)
=
∫
b(z) p(x| z) dη(z)
∫
p(x| z) dη(z) .

If the mixing distribution is completely unknown, which we assume, then
the tangent set Ḣη for η can be taken equal to the maximal tangent set
{b ∈ L2(η): ηb = 0}.

In particular, consider the situation that the kernel p(x| z) belongs to an
exponential family, i.e. p(x| z) = c(z)d(x) exp

(
zTx

)
. Mixtures over exponen-

tial families of this type give relatively large models. In fact, if the interior
of the support of η is nonempty, than the tangent set AηḢη is dense in the
maximal tangent set {g ∈ L2(Pη):Pηg = 0}. We show this below.

This has as a consequence that empirical estimators Png, for a fixed
squared-integrable function g, are efficient estimators for the functional
ψ(η) = Pηg. For instance, the sample mean is asymptotically efficient for
estimating the mean of the observations. This is somewhat surprising, be-
cause the mixture densities may still possess very special properties. For
instance, mixtures over the exponential scale family p(x| z) = zezx1x>0 are
monotone densities, and mixtures over the normal location family are ex-
tremely smooth. In terms of entropy the second collection of mixtures is
almost finite-dimensional and there exist estimators pη̂ that obtain a rate of
convergence in the Hellinger distance of the order logn/

√
n. Thus the set of

all exponential mixtures can be far from being equal to the nonparametric
model.

The closure of the range of the operator Aη is the orthocomplement of
the kernel N(A∗

η) of its adjoint. Hence our claim is proved if this kernel is
zero. The equation

0 = A∗
ηg(z) = E

(
g(X)|Z = z

)
=
∫
g(x) p(x| z) dx

says exactly that g(X) is a zero-estimator under p(x| z). Since the adjoint is
defined on L2(η), the equation 0 = A∗

ηg should be taken to mean A∗
ηg(Z) = 0

almost surely under η. In other words, the display is valid for every z in a
set of η-measure 1. If the support of η contains a limit point, then this set is
rich enough to conclude that g = 0, by the completeness of the exponential
family.

The same argument shows also that the range of the score operator, equiv-
alently the range of its adjoint, is not closed in this example. This has as a
consequence that many functionals y → χ(η) are not in the realm of the

√
n-

theory of estimation. As an example consider the functional χ(η) = η(A) for
a given set A. This has influence function χ̃ = 1A − η(A), which is contained
in the range of A∗

η if and only if there exists a measurable function g such
that

1A(z) =
∫
g(x)c(z)d(x)ez

T x dµ(x), η-a.e..

The completeness of the exponential family shows that the A must have
probability 0 or 1 under η. Functionals as these belong to the realm of inverse
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problems. Not much is known about them today. The deconvolution problem
(i.e. p(x| z) a location family) has best been studied, with a characterization of
rates for estimating the mixing distribution function and its derivatives using
Fourier inversion methods. Even in this case very little is known concerning
standard methods of estimation, such as maximum likelihood.

If the support of η does not contain a limit point, then the preceding
approach to show that the tangent set is dense fails. However, we may reach
almost the same conclusion by using a different type of scores. The paths
ηt = (1− ta)η + taη1 are well-defined for 0 ≤ at ≤ 1, for any fixed a ≥ 0 and
η1, and lead to scores

∂

∂t |t=0
log pηt

(x) = a
(pη1
pη

(x)− 1
)
.

This is certainly a score in a pointwise sense, and can be shown to be a score
in the L2-sense provided that it is in L2(Pη). If g ∈ L2(Pη) has Pηg = 0 and
is orthogonal to all scores of this type, then

0 = Pη1g = Pηg
(pη1
pη
− 1

)
, every η1.

If the set of distributions {Pη: η ∈ H} is complete, then we can typically
conclude that g = 0 almost surely. Then the closed linear span of the tangent
set is equal to the nonparametric, maximal tangent set. Since this set of scores
is also a convex cone, Theorems 2.7 and 2.5 next show that nonparametric
estimators are asymptotically efficient.

3.2 Semiparametric Models

In a semiparametric model {Pθ,η: θ ∈ Θ, η ∈ H}, the pair (θ, η) plays the role
of the single η in the preceding general discussion. The two parameters can
be perturbed independently, and the score operator can be expected to take
the form

Aθ,η(a, b) = aT �̇θ,η +Bθ,ηb.

Here Bθ,η: Hη → L2(Pθ,η) is the “score operator” for the nuisance parameter.
The domain of the operator Aθ,η: Rk × lin Hη → L2(Pθ,η) is a Hilbert space
relative to the inner product

〈(a, b), (α, β)〉η = aTα+ 〈b, β〉Hη
.

Thus this example fits in the general set-up, with R
k×Hη playing the role of

the earlier Hη. We shall derive expressions for the efficient influence functions
of θ and η.

Fact 3.9. Given a continuous, linear map A: H1 → H2 between Hilbert
spaces, the operator A(A∗A)−1A∗ (if it exists) is the orthogonal projection
of H1 onto the range space of A.
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The efficient influence function for estimating θ is expressed in the effi-
cient score function for θ in Lemma 2.16, which is defined as the ordinary
score function minus its projection onto the score-space for η. Presently, the
latter space is the range of the operator Bθ,η. If the operator B∗

θ,ηBθ,η is
continuously invertible (but in many examples it is not), then the operator
Bθ,η(B∗

θ,ηBθ,η)
−1B∗

θ,η is the orthogonal projection onto the nuisance score
space, and

�̃θ,η =
(
I −Bθ,η(B∗

θ,ηBθ,η)
−1B∗

θ,η)�̇θ,η. (3.3)

This means that b = −(B∗
θ,ηBθ,η)

−1B∗
θ,η �̇θ,η is a “least favourable direction”

in H, for estimating θ. If θ is one-dimensional, then the submodel t→ Pθ+t,ηt

where ηt approaches η in this direction, has the least information for estimat-
ing t and score function �̃θ,η, at t = 0.

A function χ(η) of the nuisance parameter can, despite the name, also be
of interest. The efficient influence function for this parameter can be found
from (3.1). The adjoint of Aθ,η: Rk ×Hη → L2(Pθ,η), and the corresponding
information operator A∗

θ,ηAθ,η: R
k × Hη → R

k × lin Hη are given by, with
B∗
θ,η:L2(Pθ,η → lin Hη the adjoint of Bθ,η,

A∗
θ,ηg =

(
Pθ,ηg�̇θ,η, B

∗
θ,ηg

)
,

A∗
θ,ηAθ,η(a, b) =

(
Iθ,η Pθ,η �̇θ,ηBθ,η·

B∗
θ,η �̇

T
θ,η B∗

θ,ηBθ,η

)(
a
b

)

.

The diagonal elements in the matrix are the information operators for the
parameters θ and η, respectively, the former being just the ordinary Fisher
information matrix Iθ,η for θ. If η → χ(η) is differentiable as before, then the
function (θ, η) → χ(η) is differentiable with influence function (0, χ̃η). Thus,
for a real parameter χ(η), equation (3.1) becomes

Pθ,ηψ̃Pθ,η
�̇θ,η = 0, B∗

θ,ηψ̃Pθ,η
= χ̃η.

If Ĩθ,η is invertible and χ̃η is contained in the range of B∗
θ,ηBθ,η, then the

solution ψ̃Pθ,η
of these equations is

Bθ,η(B∗
θ,ηBθ,η)

−χ̃η − 〈Bθ,η(B∗
θ,ηBθ,η)

−χ̃η, �̇θ,η〉TPθ,η
Ĩ−1
θ,η �̃θ,η.

The second part of this function is the part of the efficient score function for
χ(η) that is “lost” due to the fact that θ is unknown. Since it is orthogonal
to the first part, it adds a positive contribution to the variance.

Example 3.10 (Cox model). We illustrate the general formulas by explicit
calculations for the Cox model. This model is appropriate for this purpose,
because the information operator can be obtained in a simple form, whereas
in other models not much progress can be made beyond writing out formulas
for the score operator and its adjoint.
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For later reference we consider the Cox model under right censoring. In
this model we observe a random sample from the distribution of the variable
X = (T ∧ C, 1{T ≤ C}, Z), where, given Z, the variables T and C are
independent, as in the right censoring model, and (Z, T ) follows the Cox
model. Thus, the density of X = (Y,∆,Z) is given by

(
eθzλ(y)e−eθzΛ(y)(1− FC|Z(y−| z)

))δ(
e−eθzΛ(y)fC|Z(y| z)

)1−δ
pZ(z).

We make a number of assumptions, whose main purpose is to simplify the
formulas and to ensure the existence of the inverse of the information oper-
ator. First, we assume that the covariate Z is bounded, and that the true
conditional distribution of T given Z possesses a continuous Lebesgue den-
sity. Second, we assume that there exists a finite number τ > 0 such that
P(C ≥ τ) = P(C = τ) > 0 and Pθ0,Λ0(T > τ) > 0. The latter condition is
not unnatural: it is satisfied if the survival study is stopped at some time τ
at which a positive fraction of individuals is still “at risk” (alive). Third, we
assume that, for any measurable function h, the probability that Z �= h(Y ) is
positive. The function Λ now matters only on [0, τ ]; we shall identify Λ with
its restriction to this interval.

The score function for θ takes the form, with x = (y, δ, z)

�̇θ,Λ(x) = δz − zeθzΛ(y).

For any bounded, measurable function a: [0, τ ] → R, the path defined by
dΛt = (1 + ta) dΛ defines a submodel passing through Λ at t = 0. Its score
function at t = 0 takes the form

Bθ,Λa(x) = δa(y)− eθz
∫

[0,y]
a dΛ.

For unbounded functions a we could employ paths of the form dΛt = χ(ta) dΛ
and obtain a score of the same form. The score operator can be viewed as
an operator Bθ,Λ:L2(Λ) → L2(Pθ,Λ), so we can take HΛ = L2(Λ) or take HΛ

equal to the subset of all bounded functions in L2(Λ).
To find a formula for the adjoint B∗

θ,Λ of Bθ,Λ:L2(Λ) → L2(Pθ,Λ), we
write

〈B∗
θ,Λg, a〉 = 〈g,Bθ,Λa〉Pθ,Λ

= EZ

∫
g(y, 1, z)

(
a(y)− eθz

∫ y

0
a dΛ

)
eθze−eθzΛ(y)

×
(
1− FC(y−| z)

)
dΛ(y)

+ EZ
∫
g(y, 0, z)

(
−eθz

∫ y

0
a dΛ

)
eθze−eθzΛ(y) dFC(y| z).

Next we use Fubini’s theorem to change the order of integration in the two
terms, rewriting the right side as

∫
a
[
· · · ] dΛ. By definition the term appear-

ing inside the square brackets is then B∗
θ,Λg. It is given by
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B∗
θ,Λg(y) = EZg(y, 1, z)eθze−eθzΛ(y)(1− FC(y−| z)

)

− EZ
∫
g(s, 1, z)e2θz1y≤se

−eθzΛ(s)(1− FC(s−| z)
)
dΛ(s)

− EZ
∫
g(y, 0, z)e2θze−eθzΛ(s)1y≤s dFC(s| z).

This is not the simple formula promised in the introduction, though it has the
benefit of being obtainable by simple mechanical manipulations. Now, B∗

θ,Λg
for an arbitrary function g is not really what interests us: rather we would like
to obtain formulas for the information operator B∗

θ,ΛBθ,Λg and for B∗
θ,Λ�̇θ,Λ.

For this we can continue our mechanical work by combining the formulas
obtained so far. This is straightforward again, and for most examples this
would be the end of the story. The Cox model is special in that clever partial
integrations can next simply the formulas considerably.

We shall not pursue this approach, as it is tedious and not insightful.
Rather we obtain the desired formulas using a statistical principle: minus
the mean of the observed information is the Fisher information. A preciser
formulation of this principle is that, given probability densities x → ps,t(x)
that depend smoothly on a parameter (s, t) ∈ R

2, we have

Es,t
( ∂
∂s

log ps,t
)( ∂
∂t

log ps,t
)

= −Es,t
∂2

∂s∂t
log ps,t.

We apply this to the submodels (s, t) → Pθ,Λs,t
for dΛs,t = (1 + sa + tb +

stab) dΛ = (1 + sa) dΛ0,t at (s, t) = (0, 0). This gives

Eθ,Λ(Bθ,Λa)(Bθ,Λb) = −Eθ,Λ
∂2

∂s∂t |s,t=0
pθ,Λs,t = −Eθ,Λ

∂

∂t |t=0
Bθ,Λ0,ta

= Eθ,ΛeθZ
∫

[0,Y ]
ab dΛ

=
∫
b(s)Eθ,ΛeθZ1s≤Y a(s) dΛ(s).

By definition of the adjoint, the left side of this display is also equal to
the inner product of b and B∗

θ,ΛBθ,Λa in L2(Λ). Thus we read off that the
information operator is the multiplication operator given by

B∗
θ,ΛBθ,Λa(s) =

(
Eθ,ΛeθZ1s≤Y

)
a(s).

The function B∗
θ,Λ�̇θ,Λ can be obtained by a similar argument, using the

submodel (s, t) → Pθ+s,Λt with dΛt = (1 + tb)dΛ. It is given by

B∗
θ,Λ�̇θ,Λ(s) = Eθ,Λ1s≤Y ZeθZ .

It is remarkable that the information operator is already in its spectral form.
It is a theorem in Hilbert space theory that every self-adjoint operator can
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be written as a multiplication operator, relative to an appropriate coordinate
system. In the present case the information operator already takes the form
of a multiplication operator relative to the original coordinate system.

It is easy to invert a multiplication operator. In the present situation, if
(θ, Λ) is a pair of parameters that satisfies the assumptions we have made, the
multiplier function y → Eθ,Λ1y≤Y eθZ is bounded away from zero on [0, τ ].
Thus the inverse of the information operator exists as a continuous operator
and is given by

(B∗
θ,ΛBθ,Λ)−1a(s) =

(
Eθ,ΛeθZ1s≤Y

)−1
a(s).

The efficient score function takes the general form ((3.3)), which, with the
functions Li,θ(y) = E1Y≥yZieθZ , reduces to

�̃θ,Λ(x) = δ
(
z − L1,θ

L0,θ
(y)

)
− eθz

∫

[0,y]

(
z − L1,θ

L0,θ
(t)
)
dΛ(t).

The efficient information for θ can be computed from this as

Ĩθ,Λ = EeθZ
∫ (

Z − L1,θ

L0,θ
(y)

)2
Gθ,Λ(y|Z) dΛ(y),

where G(y|Z) = P(Y ≥ y|Z). This is strictly positive by the assumption
that Z is not almost surely equal to a function of Y .

The formula for Ĩθ,Λ can be obtained by direct (but tedious, if not difficult)
computations. Alternatively, we can use martingale theory. The process

Mt = 1T≤t −
∫

[0,t]
1s≤T eθZ dΛ(s)

is a martingale relative to the filtration generated by (Z,C) and 1T≤s for
s ≤ t, with predictable quadratic variation process

〈Mt〉 =
∫

[0,t]
1s≤T eθZ dΛ(s).

(We have assumed that Λ is continuous.) The efficient score can be written
as the integral

�̃θ,Λ(X) =
∫

1t≤C
(
Z − L1,θ

L0,θ
(t)
)
dMs.

Because the integrand is predictable, the integral can be viewed as both an
ordinary Stieltjes integral and a stochastic integral. By the second interpre-
tation we have that

E�̃2θ,Λ(X) = E
∫

1s≤C
(
Z − L1,θ

L0,θ
(t)
)2
d〈Mt〉.

This can be seen to reduce to the formula obtained previously.

Notes This lecture is based on the papers [1] and [37].



4. Lecture:
Gaussian Approximations

In this lecture we give proofs of the lower bound theorems stated in Lecture 2,
in a more general setting. For completeness we start by a crash course on
contiguity.

4.1 Contiguity

Suppose we are given two probability measures P and Q on a measurable
space (Ω,U), with densities p and q relative to some measure µ. We denote
by dQ/dP the ratio q/p, which is with P -probability one well-defined and
not depending on µ. In fact, it is a density of the absolutely continuous part
of Q relative to P . (Note that we do no write dQa/dP and we do not assume
that Q � P .) Let X:Ω → D be a measurable map in a metric space. Then
(X, dQ/dP ) is a measurable map into D× R, and it induces a law L on this
space if we equip (Ω,U) with P . If Q� P , then this law determines the law
of X under Q, because in this case

Q(X ∈ B) = EP 1B(X)
dQ

dP
=
∫

B×R

v dL(x, v).

The validity of this formula depends essentially on the absolute continuity of
Q with respect to P , because a part of Q that is orthogonal with respect to
P cannot be recovered from any P -law.

Consider an asymptotic version of the problem. Let (Ωn,An) be measur-
able spaces, each equipped with a pair of probability measures Pn and Qn.
Under what conditions can a Qn-limit law of random vectors Xn:Ωn → R

k

be obtained from suitable Pn-limit laws? In view of the above it is necessary
that Qn is “asymptotically absolutely continuous” with respect to Pn in a
suitable sense. The right concept is contiguity.

Definition 4.1. The sequence Qn is contiguous with respect to the sequence
Pn if Pn(An) → 0 implies Qn(An) → 0 for every sequence of measurable
sets An. This is denoted Qn � Pn. The sequences Pn and Qn are mutually
contiguous if both Pn � Qn and Qn � Pn. This is denoted Pn � � Qn.
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The name “contiguous” is standard, but perhaps conveys a wrong image.
“Contiguity” suggests sequences of probability measures living next to each
other, while the correct image is “on top of each other” (in the limit).

Before answering the question of interest, we give two characterizations
of contiguity in terms of the asymptotic behaviour of the likelihood ratios of
Pn and Qn. The likelihood ratios dQn/dPn and dPn/dQn are nonnegative
and satisfy

EPn

dQn
dPn

≤ 1 and EQn

dPn
dQn

≤ 1.

Thus, the sequences of likelihood ratios dQn/dPn and dPn/dQn are uni-
formly tight under Pn and Qn, respectively. By Prohorov’s theorem, every
subsequence has a further weakly converging subsequence. The next lemma
shows that the properties of the limit points determine contiguity.

Lemma 4.2 (Le Cam’s first lemma). Let Pn and Qn be sequences of
probability measures on measurable spaces (Ωn,An). Then the following state-
ments are equivalent:

(i) Qn � Pn;
(ii) if dPn/dQn

Qn� U along a subsequence, then P(U > 0) = 1;
(iii) if dQn/dPn

Pn� V along a subsequence, then EV = 1;
(iv) for any statistics Tn:Ωn → R

k: if Tn
Pn→ 0, then Tn Qn→ 0.

We do not include a proof of this lemma, but note that the lemma is easy
if the sequences Pn and Qn are constant. If (Ωn,Un) = (Ω,U), Pn = P and
Qn = Q for each n, then contiguity is equivalent to absolute continuity, and
the lemma reduces to the equivalence of the three statements

Q� P, Q
(dP
dQ

= 0
)

= 0, EP
dQ

dP
= 1.

The lemma shows that these equivalences persist if the three statements are
replaced by their asymptotic counterparts.

According to Lemma 1.9 the likelihood ratios of the measures Pn1/√n and
Pn for a given differentiable path t → Pt are asymptotically log-normally
distributed with mean − 1

2Pg
2 and variance Pg2. This makes these sequences

of measures mutually contiguous.

Example 4.3 (Asymptotic log normality). Let Pn and Qn be probability mea-
sures on arbitrary measurable spaces such that

dPn
dQn

Qn� eN(µ,σ2).

Then Qn � Pn. Furthermore, Qn � � Pn if and only if µ = − 1
2σ

2.
Since the (log normal) variable on the right is positive, the first assertion

is immediate from (ii) of the theorem. The second follows from (iii) with the
roles of Pn and Qn switched, upon noting that E expN(µ, σ2) = 1 if and only
if µ = − 1

2σ
2.
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The following theorem solves the problem of obtaining aQn-limit law from
a Pn-limit law that we posed in the introduction. The result, a version of Le
Cam’s third lemma, is in perfect analogy with the nonasymptotic situation.

Theorem 4.4. Let Pn and Qn be sequences of probability measures on mea-
surable spaces (Ωn,An), and let Xn:Ωn → R

k be a sequence of maps. Suppose
that Qn � Pn and (

Xn,
dQn
dPn

)
Pn� (X,V ).

Then L(B) = E1B(X)V defines a probability measure, and Xn
Qn� L.

Proof. Since V ≥ 0, it follows with the help of the monotone convergence
theorem that L defines a measure. By contiguity, EV = 1 and hence L is a
probability measure. It is immediate from the definition of L that

∫
f dL =

Ef(X)V for every measurable indicator function f . Conclude, in steps, that
the same is true for every simple function f , any nonnegative measurable
function, and every integrable function.

If f is continuous and nonnegative, then so is the function (x, v) → f(x) v
on R

k × [0,∞). Thus

lim inf EQn,∗f(Xn) ≥ lim inf
∫

∗
f(Xn)

dQn
dPn

dPn ≥ Ef(X)V,

by the portmanteau lemma. Apply the portmanteau lemma in the converse
direction to conclude the proof that Xn

Qn� L. �


Example 4.5 (Le Cam’s third lemma). The name Le Cam’s third lemma is
often reserved for the following result. If

(

Xn, log
dQn
dPn

)
Pn� Nk+1

((
µ

− 1
2σ

2

)

,

(
Σ τ
τT σ2

))

,

then
Xn

Qn� Nk(µ+ τ,Σ).

In this situation the asymptotic covariance matrices of the sequence Xn are
the same under Pn and Qn, but the mean vectors differ by the asymptotic
covariance τ between Xn and the log likelihood ratios.

The statement is a special case of the preceding theorem. Let (X,W ) have
the given (k+1)-dimensional normal distribution. By the continuous mapping
theorem, the sequence (Xn, dQn/dPn) converges in distribution under Pn to
(X, eW ). Since W is N(− 1

2σ
2, σ2)-distributed, the sequences Pn and Qn are

mutually contiguous. According to the abstract version of Le Cam’s third
lemma, Xn

Qn� L with L(B) = E1B(X)eW . The characteristic function of L
is
∫
eit

T x dL(x) = Eeit
TX eW . This is the characteristic function of the given

normal distribution at the vector (t,−i). Thus
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∫
eit

T x dL(x) = eit
Tµ− 1

2σ
2− 1

2 (tT ,−i)
(
Σ τ
τT σ2

)(
t
−i

)

= eit
T (µ+τ)− 1

2 t
TΣt.

The right side is the characteristic function of the Nk(µ+ τ,Σ) distribution.

Example 4.6. Let t → Pt be a differentiable path with score function g and
let Tn = Tn(X1, . . . , Xn) be statistics such that

√
n
(
Tn − ψ(P )

)
=

1√
n

n∑

i=1

h(Xi) + oP (1),

for a function h with Ph = 0 and Ph2 < ∞. Then the sequence
√
n
(
Tn −

ψ(P )
)

converges in distribution to a normal measure with mean Pgh and
variance Ph2 under Pn1/√n.

Consequently, if ψ is differentiable at P , then
√
n
(
Tn − ψ(P1/

√
n)
)

con-
verges in distribution to a normal measure with mean Pg(h− ψ̃P ) and vari-
ance Ph2. It follows that Tn is a regular estimator sequence if only if h− ψ̃P
is orthogonal to the tangent set. In other words if and only if h is an influence
function of ψ.

4.2 Gaussian Representations

LetH be a subset of a Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. For
each n ∈ N and h ∈ H, let Pn,h be a probability measure on a measurable
space (Xn,An). Consider the problem of estimating a “parameter” κn(h)
given an “observation” Xn with law Pn,h.

For ease of notation, let {∆h:h ∈ H} be the “iso-Gaussian process” with
zero mean and covariance function E∆h1∆h2 = 〈h1, h2〉. The sequence of
experiments (Xn,An, Pn,h:h ∈ H) is called asymptotically (shift) normal if

log
dPn,h
dPn,0

= ∆n,h − 1
2‖h‖

2,

for stochastic processes {∆n,h:h ∈ H} such that

∆n,h
0� ∆h marginally.

Here h� denotes weak convergence under Pn,h. This terminology arises from
the theory of limiting experiments due to Le Cam.

The sequence of parameters κn(h) is assumed to belong to a Banach space
D. We assume that it is asymptotically differentiable in the sense that

rn
(
κn(h)− κn(0)

)
→ κ̇(h), for every h ∈ H,
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for a continuous, linear map κ̇: lin H → D and certain linear maps rn: D → D

(“norming operators”). Any maps Tn:Xn → D are considered estimators of
the parameter.

Example 4.7 (I.i.d. observations). To cover the situation of Lectures 1–3,
let Xn = Xn, An = An and Pn,h = P1/

√
n,h for a differentiable path with

score h. Furthermore, let κn(h) = ψ(P1/
√
n,h). Then differentiability of ψ

implies the asymptotic differentiability of κn relative to the norming rate rn =√
n, with derivative κ̇ = ψ̇P . The asymptotic normality of the experiments

(Pn1/√n,h:h ∈ ṖP ) follows from Lemma 1.9, where we may take H = ṖP ,
contained in the Hilbert space L2(P ). In all these definitions the measure P is
fixed (and considered statistically “known”), and h is an unknown parameter,
known to belong to the tangent set.

Theorem 4.8 (Gaussian Representation). Suppose that Tn:Xn → D are
statistics with values in a Banach space D such that, for every h ∈ H and
tight probability measures Lh,

√
n
(
Tn − κn(h)

) h� Lh.

Assume that the parameters κn are asymptotically differentiable. Then for
any orthonormal sequence h1, . . . , hm in linH there exists a measurable
map T : Rm × [0, 1] → D such that T − κ̇(h) is distributed as Lh if the
law of T is calculated under the product of the normal measure with mean(
〈h, h1〉, . . . , 〈h, hm〉

)
and covariance the identity and the uniform measure

on [0, 1].

Proof. By an easy calculation we see that the random variable ∆Σaihi
−∑

ai∆hi has second moment zero. Hence the process h → ∆n,h is linear, in
an almost sure sense. From this we conclude that the sequence ∆n,Σaihi −∑
ai∆n,hi

converges to zero in probability under Pn,0. Thus the sequence
h→ ∆n,h is asymptotically linear.

Next define variables

Zn,h = rn
(
Tn − κn(h)

)
,

Λn(h) = log
dPn,h
dPn,0

= ∆n,h − 1
2‖h‖

2, for h =
∑
aihi.

By assumption, the sequence Zn,0 and each sequence ∆n,h converge in dis-
tribution in D and R, respectively. By Prohorov’s theorem, there exists a
subsequence of {n} such that

(
Zn′,0, ∆n′,h1 , . . . , ∆n′,hk

) 0� (Z,∆h1 , . . . , ∆hk
),

in D×R
k, where the random vector on the right can be defined on a suitable

probability space and has marginal distributions L0 and the standard normal
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distribution on R
k, respectively. In view of the asymptotic linearity of the

processes h → ∆n,h and the asymptotic differentiability of the sequence of
parameters we obtain, for every h ∈ H,

(
Zn′,h, Λn′(h)

) 0�
(
Z − κ̇(h), ∆h − 1

2‖h‖
2
)
.

Next we can apply Le Cam’s third lemma to see that there exist variables
Zh, defined on some probability space, such that Zn′,h

a� Zh, where a�
denotes weak convergence under Pn,h for h =

∑
aihi, and Zh is distributed

according to

P(Zh ∈ B) = E1B
(
Z −

∑
aiκ̇(hi)

)
e
∑
ai∆hi

− 1
2‖a‖2

. (4.1)

By assumption the weak limit Zh is distributed according to Lh.
We are ready to construct an appropriate randomized estimator T . For

ease of notation let X0 and U be independent variables with a standard
normal distribution on R

k and the uniform distribution, respectively. Suppose
that T is such that

(
T (X0, U), X0

)
is distributed as (Z,∆h1 , . . . , ∆hk

)
. Then,

if X is normally distributed with mean vector µ(h) =
(
〈h, h1〉, . . . , 〈h, hm〉

)

and covariance the identity and independent of U , we have

Ph
(
T (X,U) ∈ B) = Eh1B

(
T (X,U)) = E01B

(
T (X,U)

)
eµ(h)TX− 1

2X
TX

= Lh(B),

because (X,U) is distributed as (X0, U) under h = 0 and hence
(
T (X,U), X

)

is distributed as (Z,∆h1 , . . . , ∆hk

)
.

To conclude the proof it suffices to construct T as in the preceding para-
graph. Because the second marginal distributions of the vectors

(
T (X0, U), X0

)

and (Z,∆h1 , . . . , ∆hk

)
are identical, it suffices to construct T such that the

conditional distributions of the first marginal given the second marginal are
identical. This is the case if for each x0 the variable T (x0, U) is distributed
according the conditional law of Z given (∆h1 , . . . , ∆hk

) = x0. This is the
problem of generating a variable with an arbitrary distribution on a Polish
space from a uniform variable. It is well-known that this possible. One con-
struction is to map the Polish space bimeasurably onto the real line, and next
use the quantile transformation to construct the induced law. �


The preceding theorem is restricted to finite-dimensional models. As we
remarked before an extension to infinite-dimensional Hilbert spaces H is
possible, but maybe not very useful, because it is hard to analyse infinite-
dimensional Gaussian experiments directly, without finite-dimensional ap-
proximation. For completeness we include an infinite-dimensional version.

Theorem 4.9. Suppose that Tn:Xn → D are statistics with values in a Ba-
nach space D such that, for every h ∈ H and a tight probability measure
Lh,
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√
n
(
Tn − κn(h)

) h� Lh.

Assume that the parameters κn are asymptotically differentiable. Then for
any orthonormal sequence h1, h2, . . . , in linH there exists a measurable
map T : R∞ × [0, 1] → D such that T − κ̇(h) is distributed as Lh if the
law of T is calculated under the product of the normal measure with mean(
〈h, h1〉, 〈h, h2〉, . . .

)
and covariance the identity and the uniform measure on

[0, 1].

The infinite-dimensional normal measure in the theorem is simply the
distribution of a sequence Z = (Z1, Z2, . . .) of independent normal variables
Zi with means 〈h, hi〉 and unit variances. Actually, the Gaussian experiment
could be represented in many different forms, the present one probably being
the simplest one. For instance, the theorem is also true if Z is replaced by
f(Z) for an arbitrary bimeasurable map f from R

∞ onto a measurable space
(e.g. the unit interval).

The preceding theorems show that estimator sequences in the sequence of
experiments (Pn,h:h ∈ H) are asymptotically matched by an estimator in a
Gaussian experiment. The next step is to analyse the Gaussian experiment.
In our abstract set-up the “optimal” measure can be defined in terms of the
adjoint κ̇∗: D∗ → linH of the asymptotic derivative of the parameters κn,
which maps the dual space of D into the closed linear span of H. This is
determined by the equation 〈κ̇∗b∗, h〉 = b∗κ̇(h).

The optimal Gaussian measure can be uniquely determined by its marginal
distributions: its induced laws under continuous, linear maps d∗: D → R. It
can be represented as the distribution of a Borel measurable random element
G in D such that d∗G is N

(
0, ‖κ̇∗d∗‖2

)
distributed, for any element d∗ from

the dual space D
∗. In the case that the Banach space D is infinite-dimensional

such a measure does not necessarily exist, but the the theorem below shows
that it does exist when we need it: if there exist good estimator sequences.

Example 4.10. Consider the case of i.i.d. observations as considered in Lec-
ture 2, with κ̇ = ψ̇P , H = ψ̇P equipped with the L2(P )-norm, and ψ taking
values in D = R

k. Then κ is representable as a vector-valued inner product
ψ̇P (h) = Phψ̃P , D

∗ = R
k, and its adjoint is the map κ̇∗a = aT ψ̃P , because

P (κ̇∗a)h = 〈a, κ̇h〉 = aTPhψ̃P = P (aT ψ̃P )h.

It follows that the optimal limit measure is the distribution of a vector G
such that aTG is normally distributed with mean 0 and variance ‖aT ψ̃P ‖2 =
P (aT ψ̃P )2. This agrees with the optimal normal measure found in Lecture 2.

In our present set-up we call a sequence of estimators Tn regular with
respect to the norming operators rn if

rn
(
Tn − κn(h)

) h� L, for every h ∈ H,

for a fixed, tight, Borel probability measure L on D.
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Theorem 4.11 (Convolution). Assume that the parameters κn are asymp-
totically differentiable.

(i) If there exists a sequence of regular estimators for κn, then there exists
a tight, Borel measurable variable G in D such that

d∗G ∼ N
(
0, ‖κ̇∗d∗‖2

)
, for every d∗ ∈ D

∗.

(ii) The limit law L of every regular sequence of estimators can be repre-
sented as the distribution of a sum G+W of independent, tight, Borel
measurable variables in D with G as distributed in (i).

Proof. (a) Assume that H is a finite-dimensional, linear space and let
h1, . . . , hm be an orthonormal base. Then the assumptions of Theorem 4.8
are satisfied and we obtain that L is the distribution of T − κ̇(h) under every
h. As shown in the proof of this theorem (see (4.1)), this means that, for
every a ∈ R

k,

L(B) = E1B
(
Z −

∑
aiκ̇(hi)

)
e
∑
ai∆hi

− 1
2‖a‖2

.

We average this equation over a with respect to a Nk(0, λ−1I) weight func-
tion. Straightforward calculations yield

L(B) =
∫

E1B

(

Z −
∑
∆hi

κ̇(hi)
1 + λ

−
∑
aiκ̇(hi)

(1 + λ)1/2

)

cλ(∆) dNk

(
0, I

)
(a),

where cλ(∆) = (1 + λ−1)k/2 exp
( 1

2 (1 + λ)−1 ∑∆2
hi

)
. Conclude that L can

be written as the law of the sum Gλ +Wλ of independent random elements
Gλ and Wλ, where Gλ = −

∑
Aiκ̇(hi)/(1 + λ)1/2 for a Nk(0, I)-distributed

vector (A1, . . . , Ak) and Wλ is distributed according to

P(Wλ ∈ B) = E1B

(

Z −
∑
∆hi

κ̇(hi)
1 + λ

)

cλ(∆).

As λ ↓ 0, we have Gλ � G =
∑
Aiκ̇(hi). The variable d∗G =∑

Aid
∗κ̇(hi) is normally distributed with zero mean and variance

Ed∗G2
λ =

∑(
d∗κ̇(hi)

)2 = ‖κ̇∗d∗‖2.

By the converse part of Prohorov’s theorem, the variables {Gλ: 0 < λ < 1}
are uniformly tight. Combined with the tightness of L it follows that there
exists, for every ε > 0, a compact K such that

1− ε < L(K) =
∫

P(Wλ + g) dPGλ(g), and P(Gλ ∈ K) > 1− ε.

This implies that for every λ there exists gλ ∈ K such that P(Wλ + gλ ∈
K) > 1− 2ε and hence P(Wλ ∈ K −K) > 1− 2ε). We conclude that set of
the variables {Wλ: 0 < λ < 1} is uniformly tight.
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If Wλm
� W for a sequence λm ↓ 0, then (Gλm

,Wλm
) � (G,W ), where

G and W are independent and G + W is distributed according to L. This
concludes the proof of the theorem for finite-dimensional H.
(b) Let H be arbitrary. For any finite orthonormal set h1, . . . , hk, the pre-
vious argument yields tight independent processes Gk and Wk such that
Gk +Wk is distributed according to L and Gk is zero-mean Gaussian with

Ed∗G2
k =

k∑

i=1

〈κ̇∗d∗, hi〉2.

The set of all variables Gk and Wk so obtained is uniformly tight. Indeed,
by tightness of L, there exists for any given ε > 0 a compact set K such
that L(K) =

∫
P(Gk ∈ K − x) dPWk(x) > 1 − ε. Thus there exists x0 with

P(Gk ∈ K − x0) > 1 − ε. By symmetry, P(Gk ∈ x0 − K) > 1 − ε, whence
P
(
Gk ∈ 1

2 (K − K)
)
> 1 − 2ε. Next, the uniform tightness of L and the

collection Gk imply the uniform tightness of the collection Wk.
Direct the finite-dimensional subspaces of H by inclusion, and construct

variables (Gk,Wk) for every subspace. Every weak limit point (G,W ) of the
net of laws (Gk′ ,Wk′) satisfies the requirements of the theorem. �


In the following minimax theorem we show that the maximum risk

sup
h

Eh∗�
(
rn(Tn − κn(h))

)

of an estimator sequence can never asymptotically fall below E�(G). A little
(asymptotic) measurability is the only requirement on Tn, but measurability
can be restrictive, so we shall be careful about it. Let D

′ be a given subspace
of D

∗ that separates points of D, and let τ(D′) be the weak topology induced
on D by the maps b′: D → R when b′ ranges over D

′.

Definition 4.12. A map �: D → R is called τ(D′)-subconvex if for every
c > 0 the set

{
y: �(y) ≤ c

}
is τ(D′)-closed, convex, and symmetric.

Theorem 4.13 (Minimax theorem). Assume that the parameters κn are
asymptotically differentiable. Suppose a tight, Borel measurable Gaussian el-
ement G as in (i) of the statement of the convolution theorem exists. Then
for every estimator sequence Tn such that d′Tn:Xn → R is measurable for
every d′ ∈ D

′ and every τ(D′)-subconvex function �: D → R,

sup
I⊂H

lim inf
n→∞

sup
h∈I

Eh∗�
(
rn
(
Tn − κn(h)

))
≥ E�(G).

Here the first supremum is taken over all finite subsets I of H.

Proof. In a general sense the proof is based on an analysis of the minimax risk
in the Gaussian representation provided by Theorem 4.8. The main work is to
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force our estimator sequence to have limit laws, so that the theorem becomes
applicable. This is achieved by compactification of the range space of Tn, so
that limit laws exist at least along subsequences and with limits concentrating
on the compactification, by Prohorov’s theorem. Because it will be necessary
to extend the loss function to the compactification, the compactification must
be chosen dependent on the loss function. Therefore the proof proceeds in
several steps, building more complicated loss functions from simple ones.

(a) Assume first that the loss function can be written in the special form
�(y) =

∑r
i=1 1Kc

i

(
d′
i,1y, . . . , d

′
i,pi
y
)

for compact, convex, symmetric subsets
Ki ⊂ R

pi and arbitrary elements d′
i,j of D

′. Fix an arbitrary orthonormal set
h1, . . . , hk in H, and set

Zin,a =
(
d′
i,1, . . . , di,pi

)
◦ rn

(
Tn − κn(

∑
aihi)

)
, 1 ≤ i ≤ r.

Considered as maps into the one-point compactification of R
pi , the sequences

Zin,a are certainly asymptotically tight. The sequences are asymptotically
measurable by assumption.

Direct the finite subsets of H by inclusion. There exists a subnet
{
nI : I ⊂

H, finite
}

such that the left side of the statement of the theorem equals

minimax risk = lim
I

sup
h∈I

Eh∗�
(
rn
(
Tn − κn(h)

))
.

By the same arguments as in the proof of the convolution theorem there
is a further subnet {n′} ⊂ {nI} such that Zin′,a

a� Zia in the one-point
compactifications, for every a ∈ R

k and every i. Here the limiting processes
satisfy, for each i,

∫
L(Zia) dNk(0, λ−1I) ∼ Giλ +W i

λ, (4.2)

for independent elements Giλ and W i
λ such that

Giλ =
(
d′
i,1, . . . , di,pi

)
◦Gλ =

(
d′
i,1, . . . , di,pi

)
◦
∑
Aiκ̇(hi)

(1 + λ)1/2
,

for a Nk(0, I)-distributed vector (A1, . . . , Ak). By the portmanteau theorem,

minimax risk ≥ lim inf
n′

r∑

i=1

Pa∗(Zin′,a /∈ Ki) ≥
r∑

i=1

P(Zia /∈ Ki).

Since this is true for every a, the left side is also bounded below by the average
of the right side, in particular the average under theNk(0, λ−1I)-distribution.
In view of (7.4) we find that

minimax risk ≥
r∑

i=1

P(Giλ +W i
λ /∈ Ki).
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The right side becomes smaller if we replace the variables W i
λ by 0. This

follows by Anderson’s lemma, according to which, given a mean zero Gaussian
vector and a convex, symmetric set K, the probability P(G + a ∈ K) is
maximized over a at a = 0, i.e. centering the Gaussian variable G+a at zero.
Thus the right side of the preceding display is bounded below by

r∑

i=1

P(Giλ /∈ Ki) = E�(Gλ).

We finish the proof for this special form of loss function by letting λ ↓ 0
followed by taking the limit along finite-dimensional subspaces of H.
(b) The theorem is “closed” under taking monotone limits on �: if the the-
orem holds for every function �r and 0 ≤ �r ≤ � with �r ↑ � almost surely
under the law of G, then the theorem holds for �. To see this, note that the
minimax risk decreases by replacing � by �r. Thus it is bounded below by
E�r(G) for every r, which increases to E�(G) as r →∞.
(c) An arbitrary subconvex � can be approximated from below by a sequence
of functions �r of the type as in (a). To see this, note first that

0 ≤ 2−r
22r
∑

i=1

1
{
y: �(y) > i2−r} ↑ �(y), for every y.

Each of the sets
{
y: �(y) > i/r

}
is convex, τ(D′)-closed, and symmetric.

Thus, it suffices to approximate functions � of the type 1Cc for a convex,
τ(D′)-closed, and symmetric set C.

By the Hahn–Banach theorem, any such set C can be written

C =
⋂

b′∈D′

{
y: |b′y| ≤ cb′

}
.

Thus the complement of C intersected with the support S of the limit variable
G is the union of the sets

{
y ∈ S: |b′y| > cb′

}
. These sets are relatively

open in S and S is separable. Since a separable set is Lindelöf, the possibly
uncountable union can be replaced by a countable subunion. Thus there exists
a sequence d′

i in D
′ and numbers ci such that Cc∩S = ∪∞

i=1

{
y ∈ S: |d′

iy| > ci
}
.

This implies that
1Cc∩S = sup

r
1Kc

r

(
d′
1y, . . . , d

′
ry
)
,

for the subsets of R
r defined by Kr = ∩ri=1

{
x ∈ R

r: |xi| ≤ ci
}
. �


Example 4.14. For D
′ = D

∗, the τ(D′)-topology is the weak topology. Be-
cause convex subsets in a Banach space are weakly closed if and only if they
are closed for the norm, a function which is subconvex relative to the norm
is automatically τ(D∗)-subconvex. The theorem is applicable to the combi-
nation of such loss functions and estimator sequences Tn that are weakly
measurable: d∗Tn should be a measurable map in R for every d∗ ∈ D

∗.
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This will typically be the case if the Banach space is separable, when
estimators will usually be required to be Borel measurable.

Example 4.15 (Skorohod space). The Skorohod space D[a, b], for a given in-
terval [a, b] ⊂ R, is a Banach space if equipped with the uniform norm. The
dual space consists of maps of the form

d∗(z) =
∫
z(u) dµ(u) +

∞∑

i=1

αi
(
z(ui)− z(ui−)

)
,

for a finite signed measure µ on [a, b], an arbitrary sequence ui in (a, b], and
a sequence αi with

∑
|αi| < ∞. (This is an extension of the representation

theorem for the dual space of the space of continuous functions on a compact
due to Riesz, obtained in [36, pp. 81–85]) Each such d∗ is the pointwise limit of
a sequence of linear combinations of coordinate projections. Thus, the σ-field
generated by the dual space equals the σ-field generated by the coordinate
projections.

It follows that an estimator sequence is D[a, b]∗-measurable if and only if
it is a stochastic process. Since “τ(D[a, b]∗)-subconvex” is identical to “sub-
convex with respect to the norm”, the minimax theorem is valid for any
sequence of stochastic processes Tn and subconvex loss function �.

Examples of subconvex loss functions include

z → �0
(
‖z‖∞

)
,

z →
∫
|z|p(t) dµ(t),

for a nondecreasing, left-continuous function �0: R → R, a finite Borel mea-
sure µ, and p ≥ 1.

Example 4.16 (Bounded functions). On the space �∞(F), functions of the
type

z → �0

(∥
∥
∥
z

q

∥
∥
∥

F

)
,

for a nondecreasing, left-continuous function �0: R → R and an arbitrary
map q:F → R are subconvex with respect to the linear space spanned by the
coordinate projections z → z(f). Indeed, for any c there exists d such that

{

z: �0
(∥
∥
∥
z

q

∥
∥
∥

F

)
≤ c

}

=
{

z:
∥
∥
∥
z

q

∥
∥
∥

F
≤ d

}

=
⋂

f∈F

{
z:
∣
∣z(f)

∣
∣ ≤ d q(f)

}
.

Thus, the minimax theorem is valid for any estimator sequence Tn that is
coordinatewise measurable and any loss function of this type.

For general loss functions that are subconvex with respect to the norm,
the preceding minimax theorem applies only under strong measurability con-
ditions on the estimator sequences. It is of interest that these measurability
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conditions are satisfied by sequences Tn such that Tn(f) is measurable for
every f and such that the sequence rn

(
Tn−κn(0)

)
is asymptotically tight un-

der Pn,0. Indeed, such sequences are asymptotically τ(�∞(F)∗)-measurable.
It follows that, given any subconvex loss function, the minimax theorem may
be used to designate optimal estimator sequences among the asymptotically
tight sequences.

Finally, consider the testing problem. The Gaussian representation the-
orem given previously was meant to be applied to the estimation problem,
but we can easily transform it into a theorem on tests by taking κn(h) ≡ 0.

Theorem 4.17 (Gaussian Representation). Let φn:Xn → [0, 1] be arbi-
trary statistics such that, for every h ∈ H and some function π:H → R,

Pn,hφn → π(h).

Then for any orthonormal sequence h1, . . . , hm in linH there exists a mea-
surable map φ: Rm → [0, 1] such that Phφ = π(h) for every h ∈ H, where Ph
is the normal measure with mean

(
〈h, h1〉, . . . , 〈h, hm〉

)
and covariance the

identity.

Proof. Because the unit interval is compact we can extract a subsequence of
φn that converges in distribution under Pn,h to a limit law Lh. By contiguity
arguments, using Le Cam’s third lemma as in the proofs of the preceding
theorems, we can even find a subsequence that works for all h in the linear
span of h1, . . . , hm. We next apply Theorem 4.8 to the corresponding subse-
quence of κn ≡ 0 and Tn = n−1/2φn to find that there exist a randomized
estimator T with values in [0, 1] that has law Lh under the product of Ph and
the uniform measure. Then φ(x) = ET (x, U) has the desired properties. �


The message of the theorem is that every limiting power function is nec-
essary the power function of a test in the limiting Gaussian experiment. The
assumption that there exists a limiting power function is very weak, because
by the compactness of the unit interval we can always construct subsequences
along which a limit exists. An analysis of tests in the Gaussian experiment
yields concrete bounds on, for instance, the power of level α tests. Compare
Theorem 2.11 in Lecture 2.

Open problem. The theorems as presented in this lecture apply to many
time series models. However, the semiparametric theory for such models, e.g.
discretely observed diffusion processes, appears to be largely undeveloped.

Notes This lecture is based on [36], [38] and Chapter 3.11 of [41]. It is
strongly motivated by ideas of Le Cam, in particular from his papers [15],
[16] and [17], and earlier results by [20] and [22] and [23].



5. Lecture:
Empirical Processes and Consistency of
Z-Estimators

In this lecture and the next lecture we discuss empirical processes. Our main
focus is the application of empirical processes to the derivation of asymptotic
properties of estimators in semiparametric models. In this first lecture we
discuss entropy numbers, Glivenko–Cantelli classes and their application to
proving consistency of M - and Z-estimators.

5.1 Empirical Measures and Entropy Numbers

Given i.i.d. random variables X1, . . . , Xn with law P on a measurable space
(X ,A) and a measurable function f :X → R we let

Pnf =
1
n

n∑

i=1

f(Xi),

Pf =
∫
f dP,

Gnf =
1√
n

n∑

i=1

(
f(Xi)− Pf

)
=
√
n(Pn − P )f,

‖f‖P,r =
(
P |f |r

)1/r
.

Given a class F of measurable functions f :X → R we view Pn as a map
f → Pnf on F . Of course, we can also think of Pn as the discrete uniform
random measure on the points X1, . . . , Xn. We denote by F a measurable
envelope function of the class F : a function F :X → R such that

∣
∣f(x)

∣
∣ ≤ F (x)

for every x ∈ X and f ∈ F . For a function z:F → R the norm ‖z‖F is the
supremum norm: ‖z‖F = supf∈F

∣
∣z(f)

∣
∣.

The law of large numbers asserts that Pnf → Pf almost surely if Pf
exists, and the central limit theorem asserts that Gnf is asymptotically nor-
mal if Pf2 < ∞. An important aim in empirical process theory is to make
these statements uniform in f ranging over a class F , in an appropriate sense.
We shall also be concerned with the behaviour of Pnf̂n and Gnf̂n for f̂n a
“random function”, which is related to uniformity.

Uniformity over a class of functions depends on the size of a class. An
appropriate measure of size are entropy numbers, which come in two types:
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with or without bracketing. Given two measurable functions l, u:X → R, the
bracket [l, u] is the collection of all functions f :X → R such that l ≤ f ≤ u.
Let ‖ ·‖ be a norm on a collection of functions. An ε-bracket is a bracket [l, u]
such that ‖u− l‖ < ε. Here it is required that both l and u are of finite norm.

Definition 5.1. The bracketing numberN[]
(
ε,F , ‖·‖

)
is the smallest number

of ε-brackets needed to cover F .

Definition 5.2. The covering number N
(
ε,F , ‖ · ‖

)
is the smallest number

of balls of radius ε needed to cover F .

The logarithms of bracketing or covering numbers are called entropies.
An ε-bracket [l, u] is contained in a ball of radius ε/2 around the midpoint
1
2 (l + u) of the bracket. It follows that N

(
ε/2,F , ‖ · ‖

)
≤ N[]

(
ε,F , ‖ · ‖

)
and

hence bracketing numbers are bigger than covering numbers (the factor 2 is of
no importance in the following). On the other hand, brackets give pointwise
control over functions, whereas for many norms knowing that some function
is in a ball, even a very small one, still leaves irregular behaviour on a set
of small measure open. Such small sets are important when the function
is applied to random variables Xi. This observation explains that typically
conditions using covering numbers use many different norms simultaneously,
whereas conditions using bracketing numbers use the “true” law P only.

The best results using covering numbers are in terms of random covering
numbers. For simplicity, we state the results in terms of the bigger uniform
covering numbers.

Definition 5.3. The Lr-uniform covering numbers relative to the enve-
lope function F are the numbers supQN

(
ε‖F‖Q,r,F , ‖ · ‖Q,r

)
, where the

supremum is taken over all discrete probability measures Q on (X,A) with
‖F‖Q,r > 0.

A class F is, by definition, totally bounded if and only ifN
(
ε,F , ‖·‖

)
<∞

for every ε > 0. (Then its completion is compact.) This will be necessary for
the desired uniform law of large numbers or central limit theorem to hold,
but it is by far not enough. A more precise measure of the size of a class F
is the rate at which the covering or bracketing numbers increase as ε ↓ 0.

5.2 Glivenko–Cantelli Classes

The Glivenko–Cantelli theorem is the uniform version of the law of large
numbers. The classical Glivenko–Cantelli theorem concerns the uniformity
in the convergence of the empirical cumulative distribution function of real-
valued random variables. The abstract version is named after this.

Definition 5.4. A collection F of measurable functions f :X → R is P -
Glivenko–Cantelli if ‖Pn − P‖F → 0 almost surely.
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We note that the random distance ‖Pn − P‖F need not be measurable.
By “almost sure” convergence Zn → Z of a sequence of possibly unmea-
surable maps with values in a metric space, we shall understand that there
exist measurable maps ∆n on the underlying probability space such that
d(Zn, Z) ≤ ∆n for each n and ∆n → 0 almost surely.

Two basic theorems on Glivenko–Cantelli classes are as follows.

Theorem 5.5. If N[]
(
ε,F , ‖ · ‖P,1

)
< ∞ for every ε > 0, then F is P -

Glivenko–Cantelli.

Theorem 5.6. If supQN
(
ε‖F‖Q,1,F , ‖ · ‖Q,1

)
<∞ for every ε > 0, PF <

∞ and F is suitably measurable, then F is P -Glivenko–Cantelli.

The condition that F be “suitably measurable” will recur, but what is
suitable will depend on the situation. In the present case it may be taken to
mean that the suprema

∥
∥
∥

1
n

n∑

i=1

eif(Xi)
∥
∥
∥

F

are measurable, for every fixed vector (e1, . . . , en) ∈ {−1, 1}n, and every
n ∈ N. A simple sufficient condition for this is that the supremum be equal
to the same supremum but then computed over a countable class F , e.g. a
subclass G ⊂ F .

The suitable measurability is necessary because the proof of the theorem is
based on a symmetrization and conditioning device, requiring an application
of Fubini’s theorem. The second, uniform entropy theorem is much harder to
prove than the bracketing Glivenko–Cantelli theorem, which can be modelled
after the proof of the classical Glivenko–Cantelli theorem.

The condition of the first theorem implies that PF < ∞: if we cover F
with finitely many brackets, of for instance size 1, and next take the supre-
mum of the absolute values of all upper and lower bracketing functions, we
obtain an integrable envelope. Thus the difference between the two theorems
resides solely in the use of bracketing or covering numbers. The stronger
bracketing numbers may be replaced by the weaker covering numbers, but
only at the cost of using uniform covering numbers.

Upper bounds on the covering or bracketing numbers of many classes of
functions are known from the classical references on these subjects (1950/60s),
from more recent work in approximation theory, and from the combinatorial
theory employed by Vapnik and Chervonenkis.

Statistical problems, in particular in semiparametric modelling, generate
many new classes of functions, sometimes of a complicated nature, for which
such estimates are not known. Then we must either derive new estimates
or can use stability theorems that allow the construction of new Glivenko–
Cantelli classes from known Glivenko–Cantelli classes. The following theorem
is in this spirit and can save much work.
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For ease of terminology we call a collection of measurable functions
f :X → R

k Glivenko–Cantelli if each of the k collections of coordinate func-
tions is Glivenko–Cantelli.

Theorem 5.7. If F is a Glivenko–Cantelli class of functions f :X → R
k

with integrable envelope and φ: Rk → R is continuous, then the class of func-
tions φ ◦ f :X → R is Glivenko–Cantelli provided that it has an integrable
envelope.

5.3 Consistency of M- and Z-estimators

Glivenko–Cantelli classes are useful to carry out proofs that M - or Z-
estimators are consistent. These are estimators defined to be a point of max-
imum or a zero of a given stochastic process.

To remain within the theme of empirical processes, we restrict ourselves
to criterion functions that are averages over the observations. For every θ in
a metric space Θ let mθ:X → R be a measurable function. An M -estimator
θ̂n is a point of maximum of the map θ → Pnmθ. The aim is to show that
this converges in probability to a point of maximum θ0 of the map θ → Pmθ.
The following theorem states a stronger result.

Theorem 5.8. Suppose that the class of functions {mθ: θ ∈ Θ} is P -
Glivenko–Cantelli and that there exists a point θ0 ∈ Θ such that
infθ:d(θ,θ0)>δ Pmθ < Pmθ0 for every δ > 0. Then Pnmθ̂n

≥ Pnmθ0 implies
that d(θ̂n, θ0) → 0 almost surely.

Proof. By the property of θ̂n, we have Pnmθ̂n
≥ Pnmθ0 = Pmθ0 − o(1),

almost surely. Hence

Pmθ0 − Pmθ̂n
≤ Pnmθ̂n

− Pmθ̂n
+ o(1)

≤ sup
θ
|Pnmθ − Pmθ|+ o(1) → 0,

almost surely. By assumption there exists for every δ > 0 a number η > 0
such that Pmθ < Pmθ0 − η for every θ with d(θ, θ0) > δ. Thus, the event{
d(θ̂n, θ0) ≥ δ

}
is contained in the event

{
Pmθ̂n

< Pmθ0 − η
}
. The latter

sequence of events decreases to a zero event, in view of the preceding display.
�


This theorem is good enough for most purposes, but can be improved in
two important ways:

– As is clear from the proof, the double-sided convergence given by the
Glivenko–Cantelli property is used only to ensure a one-sided convergence,
corresponding to the fact that we maximize a criterion function. However,
we like the simple Glivenko–Cantelli condition over a more complicated
one-sided condition. The tricks that we present below often blur the dif-
ference.
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– If θ is far from θ0, then usually Pmθ will be far from Pmθ0 . The closeness of
the random criterion Pmθ to the limit Pmθ need therefore not be uniform
in θ as it is required by the Glivenko–Cantelli property. We shall make
use of this in Lecture 8 when discussing rates of convergence. (It appears
that any type of relaxation of the Glivenko–Cantelli condition to make this
point precise, automatically results in a stronger statement concerning a
rate of convergence.)

Thus we shall not formulate any refinements here. Our interest will go in
another direction: application to semiparametric estimation problems. Be-
fore discussing a concrete example, it is instructive to compare the present
theorem to the one obtained by Wald in the 1940s. (Wald had maximum
likelihood estimators in mind, but his proof applies equallly well to general
M -estimators.) Wald’s main conditions were compactness of the parameter
set (or the possibility of compactification) and local domination. Taking the
preceding remarks into account the present theorem contains Wald’s theorem,
in view of the following lemma.

Lemma 5.9. Let Θ be a compact metric space, let the map θ → mθ(x) be
continuous for every x ∈ X and suppose that every θ has a neighbourhood B
such that supθ∈B |mθ| is dominated by an integrable function. Then the class
{mθ: θ ∈ Θ} is Glivenko–Cantelli and infθ:d(θ,θ0)>δ Pmθ < Pmθ0 for every
δ > 0 if and only if θ → Pmθ possesses a unique global maximum at θ0.

Proof. The compactness of Θ and the local domination of the functions mθ

imply that the class {mθ: θ ∈ Θ} possesses an integrable envelope func-
tion. The dominated convergence and the assumed continuity of the maps
θ → mθ(x) imply that the map θ → Pmθ is continuous. Thus it attains its
maximum on the compact set {θ ∈ Θ: d(θ, θ0) ≥ δ} for every given δ > 0,
and this is smaller than its value at θ0, by the assumption that θ0 is a unique
maximum.

To complete the proof we show that the L1(P )-bracketing numbers of the
class {mθ: θ ∈ Θ} are finite. If Bm is a decreasing sequence of neighbourhoods
of a fixed θ such that ∩mBm = {θ} and um and lm are defined as the
supremum and infimum of the functions mθ with θ ∈ Bm, then um − lm →
mθ −mθ = 0 as m→∞, by the continuity of the functions θ → mθ. By the
dominated convergence theorem P (um− lm) → 0. We conclude that for every
ε > 0 and θ ∈ Θ there exists a neighbourhood B such that P (uB − lB) < ε,
for uB and lB the supremum and infimum of the functions mθ with θ ∈ B.
The collection of neighbourhoods B obtained this way by varying θ over
Θ has a finite subcollection that covers Θ, by the compactness of Θ. The
corresponding brackets [lB , uB ] cover the class {mθ:∈ Θ}. �


The preceding theorem reduces the consistency proof of an M -estimator
to verification of the good behaviour of the limit criterion function θ → Pmθ

and a Glivenko–Cantelli property. The same methods apply to Z-estimators.
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For every θ in a set Θ ⊂ R
k let ψθ:X → R

k be a measurable, vector-
valued function. A Z-estimator θ̂n is a zero of the map θ → Pnψθ. The aim is
to show that this converges in probability to a zero θ0 of the map θ → Pψθ.

Theorem 5.10. Suppose that the class of functions {ψθ: θ ∈ Θ} is P -
Glivenko–Cantelli and that there exists a point θ0 ∈ Θ such that
infθ:d(θ,θ0)>δ ‖Pψθ‖ > 0 = ‖Pψθ0‖ for every δ > 0. Then Pnψθ̂n

= 0 im-
plies that d(θ̂n, θ0) → 0 almost surely.

Proof. By the Glivenko–Cantelli property ‖Pψθ̂‖ = ‖Pnψθ̂‖ + o(1) = o(1),
almost surely as n → ∞, by the property of θ̂. Thus it is impossible that
d(θ̂, θ0) > δ infinitely often, for any δ > 0. �


Not with standing beautiful and simple results as the preceding theo-
rems, it remains an unfortunate fact that consistency proofs are not easily
forced into a single mould. Because consistency concerns the behaviour of
estimators on the global model, a differential analysis, such as possible for
normality proofs, is impossible. (Unless one is satisfied with statements as:
there exists some sequence of local maxima that converges to a true value,
without worrying about the selection of such a sequence or the behaviour of
an arbitrary sequence of maxima. We are not.) Proving consistency remains
somewhat of an art, and is sometimes the hardest part of the analysis of a
maximum likelihood estimator. This is true in particular for semiparametric
maximum likelihood estimators, because semiparametric likelihoods may be
ill-behaved. In the following three sections we discuss some useful tricks, each
time illustrated by an example of interest.

5.3.1 Trick 1: Errors-in-variables

Consider the errors-in-variables models pθ,η(x, y) =
∫
φ(x − z)φ

(
y − fθ(z)

)

dη(z), where φ is the standard normal density. The regression function fθ
is assumed known up to a parameter θ ∈ Θ ⊂ R

k. We wish to prove
that the maximum likelihood estimator (θ̂, η̂) defined as the maximizer of∏n
i=1pθ,η(Xi, Yi) over all θ ∈ Θ and probability distributions η on some in-

terval Z ⊂ R is consistent.
To simplify we assume that Θ and Z are compact. In the case that the

natural parameter space for z is the real line, we could achieve this by ex-
tending the model to all probability distributions on the extended real line
R, defining φ(x − z)φ

(
y − fθ(z)

)
to be zero for z = ±∞. Furthermore, we

assume that (θ, z) → fθ(z) is continuous on Θ ×Z.
The set of all probability measures on Z is compact under the weak topol-

ogy. Furthermore, the map (θ, η) → pθ,η(x, y) is continuous for every (x, y).
To analyse the maximum likelihood estimator we might apply the preceding
theorem with the functions mθ,η = log pθ,η. These would form a Glivenko–
Cantelli class by the preceding lemma, except for the fact that we need to
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find an integrable envelope function. These functions are bounded above, but
their unboundedness from below could prevent this from being true. Because
we are interested in a point of maximum, unboundness from below should
not cause problems. We could see this by improving the preceding theorem,
along the lines of the remarks following its proof. A simpler approach is to
apply the theorem not with the functions log pθ,η, but with the functions

mθ,η = log
(pθ,η + pθ0,η0

2

)
.

It is not true that the maximum likelihood estimator (θ̂, η̂) maximizes Pnmθ,η

for this choice of mθ,η, but it is true that

Pnmθ̂,η̂ = Pn log
(pθ̂,η̂ + pθ0,η0

2

)
≥ Pn

1
2

(
log pθ̂,η̂ + log pθ0,η0

)

≥ Pn log pθ0,η0 .

In the first inequality we use the concavity of the logarithm, and in the second
the definition of (θ̂, η̂). Thus Pmθ̂,η̂ ≥ Pmθ0,η0 and this is good enough for
the application of the theorem, because we also have that Pmθ,η < Pmθ0,η0

unless the densities 1
2 (pθ,η+pθ0,η0) and pθ0,η0 define the same measure. Equiv-

alently, unless pθ,η and pθ0,η0 define the same probability measure.
The last requirement concerns the identifiability of the parameter (θ0, η0).

This depends on the nature of the functions fθ and is a nontrivial matter.
For the case of linear functions fθ it was settled in the 1970s.

The functions pθ,η and hence the functions mθ,η are uniformly bounded
above. Furthermore, the functions mθ,η are bounded below by the function
log pθ0,η0 − log 2. Hence the class of functions mθ,η has a Pθ0,η0-integrable
envelope if Pθ0,η0 log pθ0,η0 > −∞. By Jensen’s inequality

Pθ0,η0(− log pθ0,η0) ≤
∫
Pθ0,η0(− log)

(
φ(x− z)φ

(
y − fθ0(z)

)
dη0(z)

� Eθ0,η0
(
X2 + Y 2 + Z2 + fθ0(Z)2

)
.

The right side is finite under reasonable assumptions on η0.

5.3.2 Trick 2: Cox model

In many semiparametric models “likelihoods” are defined through point
masses. A Wald-type proof of consistency is then ruled out by the lack of
continuity of the likelihood relative to a useful topology. A proof of consis-
tency may then proceed by an intermediate step using “likelihood equations”,
but still relying on the Glivenko–Cantelli theorem at several points. We il-
lustrate this for the Cox model, as described in Lecture 3, Example 3.10.
Other models have been treated by the same method, albeit that the exact
arguments usually are more complicated. We make the same assumptions as
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in Lecture 3. In particular, C is smaller than some τ with probability one
and satisfies P(C = τ) > 0 and P(T > τ) > 0.

The density of an observation in the Cox model takes the form

(
eθzλ(y)e−eθzΛ(y)(1− FC|Z(y−| z)

))δ(
e−eθzΛ(y)fC|Z(y| z)

)1−δ
pZ(z).

To define a maximum likelihood estimator for (θ, Λ), we of course drop the
terms involving the distribution of (C,Z), which is assumed not to depend
on the parameter of interest. Unfortunately, the supremum of

n∏

i=1

(
eθZiλ(Yi)e−eθZiΛ(Yi)

)∆i
(
e−eθZiΛ(Yi)

)1−∆i

over all parameters θ and hazard functions λ is infinite. We can approximate
this supremum by choosing hazard functions that have very high, but very
thin peaks around the values Yi with∆i = 1. By making the peaks sufficiently
thin we can ensure that the values Λ(Yi) are arbitrarily close to zero and hence
the value of the preceding display will be determined by the factor

∏n
i=1λ(Yi).

Thus we cannot define a maximum likelihood estimator in this way. The
way out is to define the likelihood instead by

n∏

i=1

(
eθZiΛ{Yi}e−eθZiΛ(Yi)

)∆i
(
e−eθZiΛ(Yi)

)1−∆i

Next we maximize over all θ ∈ Θ and nondecreasing, cadlag functions
Λ: [0,∞) → R with Λ(0) = 0. (This is a bit bigger than the set of cumulative
hazard functions, defined as finite measures of the type dΛ = dF/(1 − F−)
for cumulative distributions F , which are restricted to having jumps of size
less than 1, but asymptotically this will not make a difference.) Maximizing
relative to Λ entails maximizing the jumps Λ{Yi} at points Yi with ∆i = 1,
meanwhile minimizing the cumulative masses Λ(Yi) at Yi such that ∆i = 0.
The best choice is among the discrete distributions Λ that jump at the points
Yi with ∆i = 1 only. This observation reduces the maximization problem to
a finite-dimensional one (finding the jump sizes), and the compactness of the
unit simplex implies that a solution exists, also jointly in θ and Λ.

What we have called “likelihood” does not have the continuity property
we would require for a Wald type proof. Also the parameter space for Λ is not
a-priori compact. We get around this problem by using likelihood equations.
For a bounded function h we can define by dΛ̂t = (1 + th) dΛ̂ a perturbation
of Λ̂, defined for at least every t in a neighbourhood of 0. The likelihood
evaluated at (θ̂, Λ̂t) viewed as a function of t must be maximal at t = 0.
Differentiating at t = 0 we obtain the stationary equation

PnBθ̂n,Λ̂n
h = 0,
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where Bθ,Λ is (the version of) the score operator given in Example 3.10. We
can rewrite this equation as

Pnδh(y) = Pne
θ̂nz

∫

[0,y]
h dΛ̂n =

∫
Pne

θ̂nzh(s)1s≤y dΛ̂n(s).

In this notation Pn is the empirical measure of the observations Xi =
(Yi, ∆, Zi), and we write Pnf(x) instead of Pnf for clarity (we hope). In-
verting the preceding display (i.e. replacing h by h/M̂n,0), we find

Λ̂hn = Pn
δh(y)
M̂n,0(y)

, M̂n,0(s) = Pne
θ̂z1s≤y.

If we knew that θ̂n were consistent, then we could use this representation
directly to prove the consistency of Λ̂n. The Cox model, as usual, is much
simpler here than other models. In other situations we find a recursive ex-
pression for Λ̂n with both Λ̂n and θ̂n appearing on the right side, but the
argument may proceed in the same way.

The Wald argument is based on comparing the value of the likelihood at
the maximum likelihood estimator and at the true value of the parameter.
In the present case this causes a problem, because the likelihood at the max-
imum likelihood estimator, a random discrete distribution, and at the true
parameter are different in character. This is solved by comparing the like-
lihood at the maximum likelihood estimator and at the random parameter
(θ0, Λ̃n) for Λ̃n defined by

Λ̃nh = Pn
δh(y)
M0(y)

, M0(s) = P0e
θ0z1s≤y.

The function Λ̃n is similar in structure to Λ̂n, but is also similar to Λ0:
applying the same algebra as previously to the equation P0B0h = 0 we see
that

Λ0h = P0
δh(y)
M0(y)

.

Under our assumptions M0(s) ≥ M0(τ) is bounded away from zero. There-
fore, the functions (y, δ) → δh(y)/M0(y) form a Glivenko–Cantelli class if h
ranges over a Glivenko–Cantelli class and hence Λ̃nh → P0δh(y)/M0(y) =
Λ0h, uniformly in h ranging over a Glivenko–Cantelli class.

The log likelihood evaluated at (θ̂, Λ̂) is bigger than the log likelihood
evaluated at (θ0, Λ̃). The point masses Λ{Yi} in the likelihood when evaluated
at Λ̂ and Λ̃ can be reexpressed in the functions M̂n,0 and M0. Specifically we
have that Λ̂/Λ̃{Yi} = M0/M̂n,0(Yi). This yields the equation

(θ̂ − θ0)Pnzδ − Pn

(
eθ̂zΛ̂(y)− eθ0zΛ̃(y)

)
+ Pnδ log

M0

M̂n,0
(y) ≥ 0. (5.1)
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In the next paragraphs we prove that this implies that for almost all ω in
the underlying probability space there exists θ∞ ∈ Θ such that along a sub-
sequence (θ̂n, Λ̂n) → (θ∞, Λ∞) and

(θ∞− θ0)P0zδ−P0

(
eθ∞zΛ∞(y)− eθ0zΛ0(y)

)
+P0δ log

M0

M∞,0
(y) ≥ 0, (5.2)

for

M∞,0(s) = P0e
θ∞z1s≤y, Λ∞h = P0

δh(y)
M∞,0(y)

.

The topology on Λ can be taken equal to the uniform norm on [0, τ ]. Not-
ing that M0/M∞,0 = dΛ∞/dΛ0, we recognize (6.4) as the Kullback–Leibler
divergence P0 log(pθ∞,Λ∞/pθ0,Λ0), which is strictly negative by the identifi-
ability of (θ0, Λ0), unless (θ∞, Λ∞) = (θ0, Λ0). This would finish the proof
that (θ̂n, Λ̂n) → (θ0, Λ0) almost surely.

To deduce (6.4) from (7.4) we note first that the functions M̂n,0 are
bounded below by M̂n,0(τ) = Pne

θ̂z1y=τ , which is asymptotically bounded
away from zero under our assumptions. Therefore the functions (δ, y) →
δh(y)/M̂n,0(y) are contained in a Glivenko–Cantelli class, almost surely, if h
ranges over a Glivenko–Cantelli class. It follows that Λ̂h = P0δh(y)/M̂n,0(y)+
o(1), almost surely, uniformly in h running through a Glivenko–Cantelli class.

Second, we note that Pne
θ̂z1y=τ Λ̂(τ) ≤ Pne

θ̂zΛ̂(y) = Pnδ, by the like-
lihood equation with h = 1 and hence Λ̂(τ) is uniformly bounded above,
eventually, almost surely.

By the compactness of Θ, the sequence θ̂n converges to a limit θ∞, at
least along subsequences. Then M̂n,0(s) → M∞,0(s), uniformly in s, almost
surely, and hence Λ̂nh→ P0δh(y)/M̂∞,0(y) = Λ∞h almost surely, uniformly
in h running through a Glivenko–Cantelli class with integrable envelope, still
along a subsequence. It now suffices to take limits in (7.4). This is done
in two steps. We first replace Pn by P0 adding a o(1)-term, which is per-
mitted, because the classes of functions (z, δ) → zδ, (y, z) → eθzΛ(y) and
(y, δ) → δ logM0/M(y) with θ ∈ Θ, Λ ranging over a uniformly bounded set
of monotone, cadlag functions and M ranging over monotone, cadlag func-
tions that are bounded away from zero, is Glivenko–Cantelli. The second step
is to replace θ̂n, Λ̂n, Λ̃n and M̂n,0 by their limits, which is justified by the
dominated convergence theorem.

5.3.3 Trick 3: Mixture models

Our first trick already showed that for proving consistency of a maximum like-
lihood estimator, it may be useful to apply a general result for M -estimators
not to the log density, but to a slightly modified function. In models that
depend linearly on a parameter belonging to a convex set, there is an even
better choice.
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Given a kernel p(x| z) indexed by z ∈ Z and a probability distribution
η on Z, let pη(x) =

∫
p(x| z) dη(z). Consider proving the consistency of the

maximum likelihood estimator η̂, which maximizes η →
∏n
i=1pη(Xi) over the

set of all probability measures.
We can use the linearity of this model, by starting from the observation

that the likelihood is bigger at η̂ than at ηt = tη + (1 − t)η̂ for every η and
t ∈ [0, 1]. Differentiating the inequality Pn log pη̂/pηt

≥ 0 from the right at
t = 0 we obtain

Pn
pη
pη̂
≤ 1.

We might try and use this equation for a consistency proof, but the quotients
pη/pη̂ may lack integrability, and it is useful to make a second step. Let
L: [0,∞) → R be a nondecreasing function such that t → L(1/t) is convex.
Then

PnL
(pη̂
pη

)
= PnL

( 1
pη/pη̂

)
≥ L

( 1
Pnpη/pη̂

)
≥ L(1) = PnL

(pη0
pη0

)
.

Thus we may use Theorem 5.8 with the choice mη = L(pη/pη0). The choice

L(t) =
tα − 1
tα + 1

, α ∈ (0, 1],

is attractive, because then L(t) = −L(1/t) is strictly concave. By Jensen’s
inequality

Pη0L
( pη
pη0

)
≤ L

(
Pη0

pη
pη0

)
≤ L(1).

Unless pη = pη0 almost surely under Pη0 , the first inequality will be strict
and hence the left side will be strictly less than the right side.

If the set of functions x → p(x| z) where z ranges over Z is Glivenko–
Cantelli, then so is its convex hull, the set of all functions pη. The one-element
class consisting of the function 1/ph0 is Glivenko–Cantelli and hence so is the
class of all functions pη/pη0 and the class of functions L(pη/pη0) when η
ranges over all probability distributions on (Z, C), by two applications of
Theorem 5.7.

We now obtain the consistency of η̂ for η0 if we can verify that Pη0L
(
pη/pη0

)

is strictly bounded away from its maximal value L(1) if η varies over the com-
plement of a ball of radius δ around η0. This, of course, depends on the metric
we choose for the set of mixing distributions. If we choose a metric for which
this set is compact, then it suffices to verify that the map η → pη(x) is contin-
uous for Pη0-almost every x, because then so is the map η → Pη0L

(
pη/pη0

)
,

by the dominated convergence theorem. In many examples the weak topol-
ogy is appropriate, possibly after first compactifying Z. A semi-metric that
always works is the induced Hellinger metric, because, for α = 1/2,

Pη0L
( pη
pη0

)
≤ −1

2h
2(pη, pη0).
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5.4 Nuisance Parameters

We close this lecture by noting that the preceding theorems have easy ex-
tensions to M - and Z-estimators defined in the presence of nuisance param-
eters. In the case of M -estimators we might be given measurable functions
mθ,η:X → R indexed by a parameter of interest θ and a nuisance parameter
η. Given an initial estimator η̂ for η, we consider θ̂ maximizing θ → Pnmθ,η̂.
More generally, given an “estimator” η̂(θ) for η that may depend on θ, we con-
sider θ̂ maximizing θ → Pnmθ,η̂(θ). (The latter criterion is sometimes called
a profile criterion function.) Both cases are covered if we allow a general
random criterion function

m̂n,θ(x) = m̂n,θ(x;X1, . . . , Xn).

We shall assume that asymptotically the randomness disappears: m̂n,θ → mθ

for deterministic, measurable functions mθ.

Theorem 5.11. Suppose that there exists a Glivenko–Cantelli class F of
functions with integrable envelope such that Pn

(
{m̂n,θ: θ ∈ Θ} ⊂ F

)
→ 1,

suppose that supθ∈Θ |m̂n,θ − mθ|(x) P→ 0 for all x, and that there exists a
point θ0 ∈ Θ such that infθ:d(θ,θ0)>δ Pmθ < Pmθ0 for every δ > 0. Then
Pnmn,θ̂n

≥ Pnm̂n,θ0 implies that d(θ̂n, θ0) → 0 in probability.

Proof. For any random sequence θ̃ and every x, the sequence |mn,θ̃ −mθ̃|(x)
is bounded by 2F (x) < ∞, for F an envelope function of the class, and
converges in probability to zero. This implies that it converges to zero in mean
and hence, by Fubini’s theorem and the dominated convergence theorem,
EP |mn,θ̃ −mθ̃| → 0. Consequently, the sequence P (mn,θ̃ −mθ̃) converges to
zero in probability.

Combining this with the Glivenko–Cantelli assumption we obtain that
the sequence |Pnm̂n,θ̃n

− Pmθ̃n
| converges to zero in probability.

The remainder of the proof is similar to the proof of Theorem 5.10. �


Notes The proofs of most results on empirical processes given in this lecture
and the following ones can be found in the book [41]. This work also contains a
reasonable number of references to the huge literature on empirical processes.
We do not refer to this here, apart from mentioning that the Saint-Flours
notes by Dudley [9] were a major step in developing the abstract theory of
empirical processes. Applications of empirical processes to the analysis of
M-estimators and Z-estimators were pioneered by Pollard. See [29], [30].

Trick 1 I learned from [4], trick 2 (applied here to the Cox model for the
first time) from Susan Murphy (see [24]), and trick 3 from [27].



6. Lecture:
Empirical Processes and Normality of
Z-Estimators

In this lecture we continue the discussion of empirical processes, now con-
centrating on the central limit theorem and uniformity in convergence in
distribution, and its applications to deriving the asymptotic distribution of
Z-estimators.

6.1 Weak Convergence in Metric Spaces

Let (Ωn,Un,Pn) be a sequence of probability spaces and, for each n, let
Xn:Ωn → D be an arbitrary map from Ωn into a metric space D.

Definition 6.1. The sequence Xn converges in distribution to a Borel mea-
sure L on D if and only if E∗f(Xn) →

∫
f dL for every bounded, continuous

function f : D → R.

Here the asterisk * denotes outer expectation, and is necessary because
we have not assumed that the maps Xn are Borel measurable. It is defined
as

E∗f(X) = inf
{

EU : U :Ω → R,measurable, U ≥ f(X),EU exists
}
.

If X is a Borel measurable map in D, defined on some probability space, with
law L, then we also write Xn � X instead of Xn � L. The limit is always
assumed to be Borel measurable. Even though the Xn and X are ordinary
maps, we also refer to them as “random elements”, as they are defined on a
probability space and hence induce randomness on D.

In the following, we do not stress the measurability issues. However, we
write stars, when necessary, as a reminder that there are measurability issues
that need to be taken care of. Although Ωn may depend on n, we do not let
this show up in the notation for E∗ and P∗.

Next consider convergence in probability and almost surely.

Definition 6.2. An arbitrary sequence of maps Xn:Ωn → D converges in
probability to X if P∗(d(Xn, X) > ε

)
→ 0 for all ε > 0. This is denoted by

Xn
P→ X.
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Definition 6.3. An arbitrary sequence of maps Xn:Ωn → D converges al-
most surely to X if there exists a sequence of (measurable) random variables
∆n such that d(Xn, X) ≤ ∆n and ∆n

as→ 0 This is denoted by Xn
as∗→ X.

These definitions also do not require the Xn to be Borel measurable. In
the definition of “convergence of probability” we added a star, for “outer
probability”. Similar to outer expectation, we define outer probability by

P∗(X ∈ B) = inf
{

P(A):A ∈ A, A ⊃ X−1(B)
}
.

The definition of “almost sure convergence” is unpleasantly complicated. This
cannot be avoided easily, because, even for Borel measurable maps Xn and
X, the distance d(Xn, X) need not be a random variable.

Most of the well-known properties and relationships of these modes of
convergence remain valid under the generalized definitions. We collect the
most important ones in the following theorem.

Theorem 6.4. For arbitrary maps Xn, Yn:Ωn → D and every random ele-
ment X with values in D,

(i) Xn
P→ X implies Xn � X;

(ii) Xn
P→ c for a constant c if and only if Xn � c;

(iii) if Xn � X, then φ(Xn) � φ(X) for every map φ: D → E that is
continuous at every point of a set D0 such that P(X ∈ D0) = 1 and
such that φ(X) is Borel measurable;

(iv) if Xn � X and d(Xn, Yn) P→ 0, then Yn � X;
(v) if Xn � X and Yn P→ c for a constant c, then (Xn, Yn) � (X, c);
(vi) if Xn

P→ X and Yn P→ Y , then (Xn, Yn) P→ (X,Y ).

The metric spaces we are mostly interested in are, besides the Euclidean
spaces, spaces of bounded functions equipped with the uniform norm. Given
an arbitrary set T let �∞(T ) be the collection of all bounded functions z:T →
R. This is a Banach space under the uniform norm

‖z‖T = sup
t∈T

∣
∣z(t)

∣
∣.

Most of the random elements X with values in �∞(T ) of interest to us
are stochastic processes in that their coordinate values Xt = πt ◦ X, for
π: �∞(T ) → R the coordinate projection z → z(t), are random variables.
However, many of them are not Borel measurable in �∞(T ) and hence the
preceding extensions of the usual definitions are useful. Earlier extensions
based on the σ-field generated by the closed balls, initiated by Dudley and
expounded by Pollard, are special cases of the present approach, which is due
to Hoffmann–Jørgensen.

We use the space �∞(T ) for defining “uniform weak convergence” of
stochastic processes, such as the empirical processes. The next theorem gives
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a characterization of weak convergence in this space by finite approxima-
tion. It is required that, for any ε > 0, the index set T can be partitioned
into finitely many sets T1, . . . , Tk such that (asymptotically) the variation
of the sample paths t → Xn,t is less than ε on every one of the sets
Ti, with large probability. Then the behaviour of the process can be de-
scribed, within a small error margin, by the behaviour of the marginal vec-
tors

(
Xn,t1 , . . . , Xn,tk

)
for arbitrary fixed points ti ∈ Ti. If these marginals

converge, then the processes converge.

Theorem 6.5. A sequence of arbitrary maps Xn:Ωn → �∞(T ) converges
weakly to a tight random element if and only if both of the following conditions
hold:

(i) the sequence
(
Xn,t1 , . . . , Xn,tk

)
converges in distribution in R

k for every
finite set of points t1, . . . , tk in T ;

(ii) for every ε, η > 0 there exists a partition of T into finitely many sets
T1, . . . , Tk such that

lim sup
n→∞

P∗
(

sup
i

sup
s,t∈Ti

∣
∣Xn,s −Xn,t

∣
∣ ≥ ε

)

≤ η.

Proof. We only give the proof of the more constructive part, the sufficiency
of (i)-(ii). For each natural number m, partition T into sets Tm1 , . . . , T

m
km

as
in (ii) corresponding to ε = η = 2−m. Since the probabilities in (ii) decrease
if the partition is refined, we can assume without loss of generality that
the partitions are successive refinements as m increases. For fixed m define
a semimetric ρm on T by ρm(s, t) = 0 when s and t belong to the same
partioning set Tmj , and by ρm(s, t) = 1 otherwise. Every ρm-ball of radius
0 < ε < 1 coincides with a partitioning set. In particular, T is totally bounded
for ρm, and the ρm-diameter of a set Tmj is zero. By the nesting of the
partitions, ρ1 ≤ ρ2 ≤ · · · . Define ρ(s, t) =

∑∞
m=1 2−mρm(s, t). Then ρ is a

semimetric such that the ρ-diameter of Tmj is smaller than
∑

k>m 2−k = 2−m,
and hence T is totally bounded for ρ. Let T0 be the countable ρ-dense subset
constructed by choosing an arbitrary point tmj from every Tmj .

By assumption (i) and Kolmogorov’s consistency theorem we can con-
struct a stochastic process {Xt: t ∈ T0} on some probability space such that(
Xn,t1 , . . . , Xn,tk

)
�

(
Xt1 , . . . , Xtk

)
for every finite set of points t1, . . . , tk

in T0. By the portmanteau lemma and assumption (ii), for every finite set
S ⊂ T0,

P
(

sup
j

sup
s,t∈Tm

j

s,t∈S

|Xs −Xt| > 2−m
)

≤ 2−m.

By the monotone convergence theorem this remains true if S is replaced by
T0. If ρ(s, t) < 2−m, then ρm(s, t) < 1 and hence s and t belong to the same
partitioning set Tmj . Consequently, the event in the preceding display with
S = T0 contains the event in the following display, and
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P
(

sup
ρ(s,t)<2−m

s,t∈T0

|Xs −Xt| > 2−m
)

≤ 2−m.

This sums to a finite number over m ∈ N. Hence, by the Borel–Cantelli
lemma, for almost all ω,

∣
∣Xs(ω)−Xt(ω)

∣
∣ ≤ 2−m for all ρ(s, t) < 2−m and all

sufficiently large m. This implies that almost all sample paths of {Xt: t ∈ T0}
are contained in UC(T0, ρ). Extend the process by continuity to a process
{Xt: t ∈ T} with almost all sample paths in UC(T, ρ).

Define πm:T → T as the map that maps every partioning set Tmj onto
the point tmj ∈ Tmj . Then, by the uniform continuity of X, and the fact that
the ρ-diameter of Tmj is smaller than 2−m, X ◦πm � X in �∞(T ) as m→∞
(even almost surely). The processes

{
Xn ◦ πm(t): t ∈ T

}
are essentially km-

dimensional vectors. By (i), Xn ◦ πm � X ◦ πm in �∞(T ) as n → ∞, for
every fixed m. Consequently, for every Lipschitz function f : �∞(T ) → [0, 1],
E∗f(Xn ◦ πm) → Ef(X) as n→∞, followed by m→∞. Conclude that, for
every ε > 0,

∣
∣E∗f(Xn)− Ef(X)

∣
∣ ≤

∣
∣E∗f(Xn)− E∗f(Xn ◦ πm)

∣
∣+ o(1)

≤ ‖f‖lipε+ P∗
(
‖Xn −Xn ◦ πm‖T > ε

)
+ o(1).

For ε = 2−m this is bounded by ‖f‖lip2−m+2−m+ o(1), by the construction
of the partitions. The proof is complete. �


In the course of the proof of the preceding theorem a semimetric ρ is
constructed such that the weak limit X has uniformly ρ-continuous sam-
ple paths, and such that (T, ρ) is totally bounded. This is surprising: even
though we are discussing stochastic processes with values in the very large
space �∞(T ), the limit is concentrated on a much smaller space of continu-
ous functions. Actually, this is a consequence of imposing the condition (ii),
which can be shown to be equivalent to asymptotic tightness. (A sequence
Xn is called asymptotically tight if for every ε > 0 there exists a compact
set K ⊂ D such that lim inf P(d(Xn,K) < η) ≥ 1 − ε for every η > 0.) It
can be shown, more generally, that every tight random element X in �∞(T )
necessarily concentrates on UC(T, ρ) for some semimetric ρ (depending on
X) that makes T totally bounded.

In view of this connection between the partitioning condition (ii), conti-
nuity and tightness, we sometimes refer to this condition as the condition of
asymptotic tightness or asymptotic equi-continuity. One consequence of this
is that a tight random element X is completely determined by its values on a
countable set (taken dense in (T, ρ)), and hence its distribution is determined
by the distributions of all its finite-dimensional projections.

The existence of a semi-metric that induces continuity will enable us to
use empirical process theory in the analysis of Z-estimators. Thus we record
the existence of the semimetric for later reference. We also note that, for
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a Gaussian limit process, this can always be taken equal to the “intrinsic”
standard deviation semimetric. This will help a good deal to make our results
on Z-estimators more concrete.

Lemma 6.6. Under the conditions (i)–(ii) of the preceding theorem there
exists a semimetric ρ on T for which T is totally bounded, and such that the
weak limit of the sequence Xn can be constructed to have almost all sample
paths in UC(T, ρ). Furthermore, if the weak limit X is zero-mean Gaussian,
then this semimetric can be taken equal to ρ(s, t) = sd(Xs −Xt).

Proof. A semimetric ρ is constructed explicitly in the proof of the preceding
theorem. It suffices to prove the statement concerning Gaussian limits X.

Let ρ be the semimetric obtained in the proof of the theorem and let
ρ2 be the standard deviation semimetric. Since every uniformly ρ-continuous
function has a unique continuous extension to the ρ-completion of T , which
is compact, it is no loss of generality to assume that T is ρ-compact. Further-
more, assume that every sample path of X is ρ-continuous.

An arbitrary sequence tn in T has a ρ-converging subsequence tn′ → t. By
the ρ-continuity of the sample paths, Xtn′ → Xt almost surely. Since every
Xt is Gaussian, this implies convergence of means and variances, whence
ρ2(tn′ , t)2 = E(Xtn′ − Xt)2 → 0. Thus tn′ → t also for ρ2 and hence T is
ρ2-compact.

Suppose that a sample path t→ Xt(ω) is not ρ2-continuous. Then there
exists an ε > 0 and a t ∈ T such that ρ2(tn, t) → 0, but

∣
∣Xtn(ω)−Xt(ω)

∣
∣ ≥ ε

for every n. By the ρ-compactness and continuity, there exists a subsequence
such that ρ(tn′ , s) → 0 and Xtn′ (ω) → Xs(ω) for some s. By the argument
of the preceding paragraph, ρ2(tn′ , s) → 0, so that ρ2(s, t) = 0 and

∣
∣Xs(ω)−

Xt(ω)
∣
∣ ≥ ε. Conclude that the path t → Xt(ω) can only fail to be ρ2-

continuous for ω for which there exist s, t ∈ T with ρ2(s, t) = 0, but Xs(ω) �=
Xt(ω). Let N be the set of ω for which there do exist such s, t. Take a
countable, ρ-dense subset A of {(s, t) ∈ T ×T : ρ2(s, t) = 0}. Since t→ Xt(ω)
is ρ-continuous, N is also the set of all ω such that there exist (s, t) ∈ A
with Xs(ω) �= Xt(ω). From the definition of ρ2, it is clear that for every fixed
(s, t), the set of ω such that Xs(ω) �= Xt(ω) is a nullset. Conclude that N is
a null set. Hence, almost all paths of X are ρ2-continuous. �


6.2 Donsker Classes

Given a random sample X1, . . . , Xn from a probability distribution P on
a measurable space (X ,A), let again Gn be the empirical process Gnf =√
n(Pnf − Pf) indexed by a given class F of measurable functions. Under

the assumptions that the class possesses a finite envelope F and that ‖P‖F
is finite (in particular if PF <∞) the sample paths f → Gnf are contained
in the space �∞(F).
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Definition 6.7. A class F of functions is P -Donsker if the sequence of em-
pirical processes converges in distribution to a tight limit process in the space
�∞(F).

The convergence of the process in �∞(F) implies the convergence of the
marginals

(
Gnf1, . . . ,Gnfk

)
for given any finite set elements fi ∈ F , by the

continuous mapping theorem. This is possible only if Pf2
i < ∞ for every i

and then the limit distribution is multivariate normal with mean zero and
covariances P (fi−Pfi)(fj −Pfj) by the multivariate central limit theorem.
Thus if F is Donsker, then Gn � G for a tight Gaussian random element in
�∞(F) with mean zero and covariance function

EGP f GP g = Pfg − PfPg.

This is known as a P -Brownian bridge. In view of the results of the preceding
section this is also determined by:

– G is a Gaussian process;
– EGf = 0, cov(Gf,Gg) = Pfg − PfPg;
– the sample paths of G can be constructed to be uniformly continuous rel-

ative to the semimetric ρ(f, g) = sd(Gf −Gg).
– F is totally bounded under ρ.

The L2(P )-metric is slightly stronger than the metric ρ, because

ρ2(f, g) = P
(
(f − Pf)− (g − Pg)

)2 ≤ P (f − g)2.

Thus the sample paths are also uniformly continuous relative to the L2(P )-
semimetric. It is not hard to see that F will also be totally bounded relative
to the L2(P )-semimetric as soon as ‖P‖F <∞. Thus there is not much loss
in replacing ρ by the L2(P )-metric and for this reason we shall work with the
simpler L2(P )-metric from now on.

Just as for the Glivenko–Cantelli theorem, there are two basic theorems
that imply that a class of functions is Donsker, using bracketing or covering
numbers. It is required that the numbers

N[]
(
ε,F , L2(P )

)
or sup

Q
N
(
ε‖F‖Q,r,F , L2(Q)

)

do not grow too fast as ε ↓ 0. The rate of growth is elegantly measured
through the bracketing integral and the uniform entropy integral defined as

J[]
(
δ,F , L2(P )

)
=
∫ δ

0

√
logN[ ]

(
ε,F , L2(P )

)
dε,

J
(
δ,F , L2) =

∫ δ

0

√
log sup

Q
N
(
ε‖F‖Q,2,F , L2(Q)

)
dε.
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The convergence of these integrals depends only on the size of the integrands
as ε ↓ 0. Because

∫ 1
0 ε

−r dε converges for r < 1 and diverges for r ≥ 1,
convergence of the integrals roughly requires that the entropies grow at slower
order than (1/ε)2.

Theorem 6.8 (Donsker theorem). Every class F of measurable functions
with J[]

(
1,F , L2(P )

)
<∞ is P -Donsker.

Theorem 6.9 (Donsker theorem). Every suitably measurable class F of
measurable functions with J(1,F , L2) <∞ and P ∗F 2 <∞ is P -Donsker.

The condition that the class F be “suitably measurable” is satisfied in
most examples, but cannot be omitted. We do not give a general definition
here, but note that it suffices that there exists a countable collection G of
functions such that each f is the pointwise limit of a sequence gm in G. We
shall call a class with this property separable.

As remarked in the preceding lecture, many estimates of the bracketing or
uniform entropy are available in the literature and can be used to derive con-
crete Donsker classes. Alternatively, new Donsker classes can be constructed
out of known Donsker classes. The following theorem is in this spirit and will
be useful.

For ease of terminology we call a collection of measurable functions
f :X → R

k Donsker if each of the k collections of coordinate functions is
Donsker.

Theorem 6.10. If F is a Donsker class of functions f :X → R
k with square-

integrable envelope, and φ: Rk → R is Lipschitz, then the class of functions
φ ◦ f :X → R is Donsker provided that it has a square-integrable envelope.

Our result on Z-estimators should cover the classical results, which are
obtained by Taylor expansions. This concerns classes of functions ψθ:X →
R
k, where θ ranges over a bounded subset of R

k and the dependence θ → ψθ
is “smooth”. The following lemma gives a bound on the entropy of such a
class, which shows that these classes are very easily Donsker.

Lemma 6.11 (Parametric class). Let F = {fθ: θ ∈ Θ} be a collection of
measurable functions indexed by a bounded subset Θ ⊂ R

d. Suppose that there
exists a measurable function m such that

∣
∣fθ1(x)− fθ2(x)

∣
∣ ≤ m(x)‖θ1 − θ2‖, every θ1, θ2.

If P |m|r < ∞, then there exists a constant K, depending on Θ and d only,
such that the bracketing numbers satisfy

N[]
(
ε‖m‖P,r,F , Lr(P )

)
≤ K

(diamΘ

ε

)d
, every 0 < ε < diamΘ.
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Proof. We use brackets of the type [fθ − εm, fθ + εm] for θ ranging over a
suitably chosen subset of Θ. These brackets have Lr(P )-size 2ε‖m‖P,r. If θ
ranges over a grid of meshwidth ε over Θ, then the brackets cover F , since,
by the Lipschitz condition, fθ1 − εm ≤ fθ2 ≤ fθ1 + εm if ‖θ1− θ2‖ ≤ ε. Thus,
we need as many brackets as we need balls of radius ε/2 to cover Θ.

The size of Θ in every fixed dimension is at most diamΘ. We can cover
Θ with fewer than (diamΘ/ε)d cubes of size ε. The circumscribed balls have
radius a multiple of ε and also cover Θ. If we replace the centers of these
balls by their projections into Θ, then the balls of twice the radius still cover
Θ. �


6.3 Maximal Inequalities

We do not include the proofs of the two Donsker theorems here, but we do
include the basic maximal inequalities, on which the proofs rest. These are
bounds on the distribution of the supremum variables ‖Gn‖F . For our main
purpose inequalities on the L1-norm of these variables are sufficient. We use
these inequalities in the next section to treat empirical processes indexed by
random functions. Actually, the Theorem 6.15 obtained there can easily be
turned into a proof of the Donsker theorems.

Lemma 6.12. For any class F of measurable functions f :X → R such that
Pf2 < δ2 for every f , we have, with a(δ) = δ/

√
LogN[](δ,F , L2(P )),

E∗
P ‖Gn‖F � J[]

(
δ,F , L2(P )

)
+
√
nP ∗F

{
F >

√
na(δ)

}
.

Corollary 6.13. For any class F of measurable functions with envelope
function F ,

E∗
P

∥
∥Gn

∥
∥

F � J[]
(
‖F‖P,2,F , L2(P )

)
.

Proof. Since F is contained in the single bracket [−F, F ], the bracketing
number N[]

(
δ,F , L2(P )

)
can be taken equal to 1 for δ = 2‖F‖P,2. Then

the constant a(δ) as defined in the preceding lemma reduces to a multiple
of ‖F‖P,2, and

√
nP ∗F

{
F >

√
na(δ)

}
is bounded above by a multiple of

‖F‖P,2, by Markov’s inequality.qed

Lemma 6.14. For any suitably measurable class F of measurable functions
f :X → R, we have, with θ2n = supf∈F Pnf

2/PnF
2,

E∗
P ‖Gn‖F � E

[
J(θn,F , L2)‖F‖Pn,2

]
� J(1,F , L2)‖F‖P,2.

6.4 Random Functions

In Lecture 10 we shall use the preceding theorems directly to ensure that cer-
tain stochastic processes appearing in the asymptotic analysis of Z-estimators
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converge in distribution. However, our main use for Donsker classes in
these lectures is indirect: they give a tool to show study averages of “ran-
dom functions”. Here by “random functions” we mean measurable functions
x → f̂n(x;X1, . . . , Xn) that, for every fixed x, are functions of the observa-
tions. We write f̂n for f̂n(·;X1, . . . , Xn) and use the notations Pnf̂n and P f̂n
as abbreviations for the expectations of the functions x→ f̂n(x;X1, . . . , Xn)
with X1, . . . , Xn fixed. Thus

Gnf̂n =
1√
n

( n∑

i=1

f̂n(Xi;X1, . . . , Xn)− P f̂n
)
,

P f̂n =
∫
f̂n(x;X1, . . . , Xn) dP (x).

Note that Gnf̂n is not centered at mean zero, although it could be considered
centered in a wide sense.

Obviously, the central limit theorem does not apply to a sequence of the
form Gnf̂n. However, if the functions f̂n are sufficiently stable, then its result
is still true.

Theorem 6.15. If there exists a P -Donsker class F such that Pn(f̂n ∈
F) → 1 and P (f̂n − f0)2 → 0 in probability, for some f0 ∈ L2(P ), then
Gn(f̂n − f0) → 0 in probability.

Proof. Assume without of loss of generality that f0 is contained in F . Define
a function g: �∞(F) × F → R by g(z, f) = z(f) − z(f0). The set F is a
semimetric space relative to the L2(P )-metric. The function g is continuous
with respect to the product semimetric at every point (z, f) such that f →
z(f) is continuous. Indeed, if (zn, fn) → (z, f) in the space �∞(F)×F , then
zn → z uniformly and hence zn(fn) = z(fn) + o(1) → z(f) if z is continuous
at f .

By assumption, f̂n P→ f0 as maps in the metric space F . Since F is
Donsker, Gn � GP in the space �∞(F), and it follows that (Gn, f̂n) �
(GP , f0) in the space �∞(F) × F . By Lemma 6.6, almost all sample paths
of GP are continuous on F . Thus the function g is continuous at almost
every point (GP , f0). By the continuous mapping theorem, Gn(f̂n − f0) =
g(Gn, f̂n) � g(GP , f0) = 0. The lemma follows, since convergence in distri-
bution and convergence in probability are the same for a degenerate limit.
�


Employing a fixed Donsker class in the preceding lemma gives a useful,
relatively simple condition for getting rid of randomness in the function f̂n.
The lemma covers many examples. However, other methods may give better
results. Sometimes it is possible to study Gn(f̂n − f0) by direct methods,
such as computing means and variances. In other situations it is good to
know that what is really needed is not that the functions f̂n remain within
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a fixed class, as n → ∞, but that the complexity of the set of functions
f̂n does not increase too much with n. We can make this precise through
a formulation using entropy conditions. On the one hand this gives more
flexibility. On the other hand, nice results such as Theorem 6.10, which allow
a calculus to create new Donsker classes, become unavailable.

In the next theorem we require that the realizations of the random func-
tions f̂n belong to classes Fn that may change with n. We assume that these
classes possess envelope functions Fn that satisfy the Lindeberg condition

PF 2
n = O(1),

PF 2
n{Fn > ε

√
n} → 0, every ε > 0.

Then the result of the preceding theorem remains true provided the entropy
integrals of the classes behave well.

Theorem 6.16. Let Fn be classes of measurable functions such that Pn(f̂n ∈
Fn) → 1 and such that either

(i) J[]
(
δn,Fn, L2(P )

)
→ 0 or

(ii) J(δn,Fn, L2) → 0, for every δn ↓ 0,

and with envelope functions that satisfy the Lindeberg condition. In the case
of (ii) also assume that the classes are suitably measurable. If P (f̂n−f0)2 → 0
in probability for some f0 ∈ L2(P ), then Gn(f̂n − f0) → 0.

Proof. Without loss of generality assume that f0 = 0. Otherwise, replace Fn
by Fn − f0 and f̂n by f̂n − f0.

First assume that (i) holds. Let Gn(δ) be the set of functions {f ∈
Fn:Pf2 ≤ δ2} By assumption we have that Pn

(
f̂n ∈ Gn(δ)

)
→ 1 as

n → ∞, for every δ > 0. On the event {f̂n ∈ Gn(δ)} we have |Gnf̂n| ≤
supg∈Gn(δ) |Gng|. By Lemma 6.12

E∗ sup
g∈Gn(δ)

|Gng| � J[]
(
δ,Gn(δ), L2(P )

)
+
PF 2

n1
{
Fn > an(δ)

√
n
}

an(δ)
,

where an(δ) is the number given in Lemma 6.12 evaluated for the class of
functions Gn(δ). The first term on the right increases if we replace Gn(δ) by
Fn and hence converges to zero as δ → 0. Since J[]

(
δn,Fn, L2(P )

)
→ 0 for

every δn ↓ 0, we must have that J[]
(
δ,Fn, L2(P )

)
= O(1) for every δ > 0 and

hence
δ
√

logN[]
(
δ,Fn, L2(P )

)
≤ J[]

(
δ,Fn, L2(P )

)
= O(1).

Therefore, an(δ) is bounded away from zero, for every fixed δ as n → ∞.
Conclude that PF 2

n1
{
Fn > an(δ)

√
n
}
→ 0 as n → ∞ followed by δ → 0.

The proof under (i) is complete.
Next assume that (ii) holds. The class Gn(δ), defined as before, has enve-

lope function 1 + Fn and hence, by Lemma 6.14,
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E∗ sup
g∈Gn(δ)

|Gng| � E∗
[
J
(
θn(δ),Gn(δ), L2

)√
Pn(1 + Fn)2

]
,

for J the uniform entropy integral of Gn(δ) relative to the envelope function
1 + Fn and

θ2n(δ) =
‖Pnf2‖Gn(δ)

Pn(1 + Fn)2
≤ ‖Pnf2‖Gn(δ) ∧ 1.

The covering numbers of Gn(δ) are bounded by by the covering numbers of Fn
and hence the uniform entropy integral of Gn(δ) is bounded by the uniform
entropy integral of Fn if we compute them relative to the same envelope
function. If for Fn we replace the envelope 1+Fn by the natural envelop Fn,
then the uniform entropy integral increases. Thus we can further bound the
right side of (6.4) by

[
E∗J2(θn(δ),Fn, L2

)
E∗

Pn(1 + Fn)2
]1/2

�
[
J2(1,Fn)P∗(θn(δ) ≥ ε

)
+ J2(ε,Fn, L2)

]1/2(
P (1 + Fn)2

)1/2
.

We conclude that the theorem is proved if we can show that θn(δ) → 0 in
probability as n→∞, followed by δ → 0.

Fix η > 0. The class of functions Hn(δ, η) =
{
f21Fn≤η√

n: f ∈ Gn(δ)
}

has
envelope function η

√
nFn. Hence by Lemma 6.14

E∗‖Gn‖Hn(δ,η) � J
(
1,Hn(δ, η), L2

)
‖η
√
nFn‖P,2. (6.1)

Because

Q(f21Fn≤η√
n − g21Fn≤η√

n)2 ≤ Q(f − g)2(2η
√
n)2,

we have

N
(
ε‖η
√
nFn‖Q,2,Hn(δ, η), L2(Q)

)
≤ N

( 1
2ε‖Fn‖Q,2,Fn, L2(Q)

)
.

Inserting this in the right side of (7.4) we see that the left side of (7.4) is
bounded by J(1,Fn, L2)η

√
n‖Fn‖P,2. We conclude that E∗‖Pn−P‖Hn(δ,η) →

0 as n→∞ followed by η → 0.
For any fixed η > 0 the class of functions Hn(δ, η) =

{
f21Fn>η

√
n: f ∈

Gn(δ)
}

satisfies

E∗‖Pn − P‖Hn(δ,η) ≤ 2PF 2
n1Fn>η

√
n → 0.

Combined with the result of the preceding paragraph this yields E∗‖Pn −
P‖Gn(δ)2 → 0, as n → ∞, for every δ > 0. Because also ‖P‖Gn(δ)2 ≤ δ2 by
the definition of the class Gn(δ), we conclude that ‖Pn‖Gn(δ)2 → 0 as n→∞
followed by δ > 0. This concludes the proof. �




406 6 Lecture: Empirical Processes and Normality of Z-Estimators

6.5 Asymptotic Normality of Z-Estimators

In the preceding lecture we showed that a Z-estimator θ̂, defined as a zero
of a random criterion function θ → Pnψθ, is typically consistent for a zero of
the limiting criterion function θ → Pψθ. The asymptotic distribution of the
difference θ̂− θ depends on the fluctuations of the random criterion function
Pnψθ around its limit Pψθ. Empirical processes are what we need to study
such fluctuations.

We start with a simple theorem. For every θ in a set Θ ⊂ R
k let ψθ:X →

R
k be a measurable, vector-valued function.

Theorem 6.17. Suppose that the class of functions {ψθ: θ ∈ Θ} is P -
Donsker, that the map θ → Pψθ is differentiable at θ0 with nonsingular
derivative V , and that the map θ → ψθ is continuous in L2(P ) at θ0. Then
any θ̂n such that Pnψθ̂n

= 0 and such that θ̂n P→ θ0 for a zero θ0 of θ → Pψθ
satisfies √

n(θ̂n − θ0) = −V −1
θ0

Gnψθ0 + oP (1).

Proof. The consistency of θ̂n and the Donsker condition on the functions ψθ
imply that

Gnψθ̂n
−Gnψθ0

P→ 0. (6.2)

By the definitions of θ̂n and θ0, we can rewrite Gnψθ̂n
as
√
nP (ψθ0 − ψθ̂n

) +
oP (1). Combining this with the Delta-method and the differentiability of the
map θ → Pψθ, we find that

√
nVθ0(θ0 − θ̂n) +

√
n oP

(
‖θ̂n − θ0‖

)
= Gnψθ0 + oP (1).

In particular, by the invertibility of the matrix Vθ0 ,
√
n‖θ̂n − θ0‖ ≤ ‖V −1

θ0
‖
√
n
∥
∥Vθ0(θ̂n − θ0)

∥
∥ = OP (1) + oP

(√
n‖θ̂n − θ0‖

)
.

This implies that θ̂n is
√
n-consistent: the left side is bounded in probabil-

ity. Inserting this in the previous display, we obtain that
√
nVθ0(θ̂n − θ0) =

−Gnψθ0 + oP (1). We conclude the proof by taking the inverse V −1
θ0

left and
right. Since matrix multiplication is a continuous map, the inverse of the
remainder term still converges to zero in probability. �


This theorem as stated covers most (or all?) of the popular examples of
Z-estimators, the condition that the functions ψθ form a Donsker class being
not at all very restrictive. The Donsker class condition is used to ensure (6.2)
and can be relaxed to

Gn(ψθ̂n
− ψθ0) = oP

(
1 +

√
n‖θ̂n − θ0‖

)

without changing the remainder of the proof. Of course, this or (6.2) does
not really require that the class {ψθ: ‖θ − θ0‖ < δ} is Donsker for any fixed
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δ, but concerns a limiting property of these classes as δ → 0. Potentially,
the Donsker condition could be relaxed to a condition that directly involves
entropy numbers.

Such a relaxation does not appear to be worth the trouble in the situation
of the preceding theorem, but is potentially of use in situations with nuisance
parameters or criterion functions that change with n.

6.6 Nuisance parameters

An important method of estimation for semiparametric models, but also in
general, is Z-estimation in the presence of nuisance parameters. We are given
measurable functions ψθ,η:X → R

k indexed by a parameter of interest θ ∈ R
k

and a nuisance parameter η belonging to some metric space. Given an initial
estimator η̂ for η, we consider the (near) solution θ̂ of the equation Pnψθ,η̂ = 0.

Theorem 6.18. Suppose that the class of functions
{
ψθ,η: ‖θ − θ0‖ < δ,

d(η, η0) < δ
}

is Donsker for some δ > 0, that the maps θ → Pψθ,η are
differentiable at θ0, uniformly in η in a neighbourhood of η0 with nonsingular
derivative matrices Vθ0,η such that Vθ0,η → Vθ0,η0 , and assume that the map
(θ, η) → ψθ,η is continuous in L2(P ) at (θ0, η0). If

√
nPnψθ̂n,η̂n

= oP (1) and
(θ̂n, η̂n) P→ (θ0, η0) for a point (θ0, η0) satisfying Pψθ0,η0 = 0, then

√
n(θ̂n − θ0) = − V −1

θ0,η0

√
nPψθ0,η̂n − V −1

θ0,η0
Gnψθ0,η0(Xi)

+ oP
(
1 +

√
n‖Pψθ0,η̂n‖

)
.

Proof. The proof closely follows the proof of the theorem without nuisance
parameters. The consistency of (θ̂n, η̂n) and the Donsker condition imply that

Gnψθ̂n,η̂n
−Gnψθ0,η0

P→ 0. (6.3)

Because (θ̂n, η̂n) and (θ0, η0) are zeros of the random criterion function and
its limit, we can rewrite this as

−Gnψθ̂0,η̂0 =
√
nP (ψθ̂n,η̂n

− ψθ0,η0) + oP (1)

=
√
n(P (ψθ̂n,η̂n

− ψθ0,η̂n
) +

√
nPψθ0,η̂n

+ oP (1).
. (6.4)

By the uniform differentiability of the map θ → Pψθ and the uniform non-
singularity of its derivative, we find that there exists c > 0 such that for all
(θ, η) in a sufficiently small neighbourhood of (θ0, η0)

∥
∥P (ψθ,η − ψθ0,η0)

∥
∥ ≥ c‖θ − θ0‖.

Combined with the preceding display this shows that with probability tending
to one,
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c‖θ̂ − θ0‖ ≤
∥
∥Gnψθ̂0,η̂0

∥
∥+

√
n‖Pψθ0,η̂n

‖ = OP
(
1 +

√
n‖Pψθ0,η̂n

‖
)
.

We now linearize the first term on the far right of (6.4) in θ̂ − θ0 and finish
the proof as before. �


Under the conditions of this theorem, the limiting distribution of the
sequence

√
n(θ̂n − θ0) depends on the estimator η̂n through the “drift” term√

nPψθ0,η̂n . In general, this gives a contribution to the limiting distribution,
and η̂n must be chosen with care. If η̂n is

√
n-consistent and the map η →

Pψθ0,η is differentiable, then the drift term can be analyzed using the Delta-
method.

It may happen that the drift term is zero. If the parameters θ and η are
“orthogonal” in this sense, then the auxiliary estimators η̂n may converge at
an arbitrarily slow rate and affect the limit distribution of θ̂n only through
their limiting value η0. In semiparametric situations it is quite common to set
up the estimating equations such that the drift term gives a zero contribution.
Then the advantage of using a random value η̂n over a fixed value could be
a gain in efficiency: we choose η̂n to converge to a value η0 such that the
asymptotic covariance matrix

V −1
θ0,η0

Pψθ0,η0ψ
T
θ0,η0V

T
θ0,η0

is “small”.
This theorem and discussion is valid whether (θ, η) completely parametrizes

a model, or not. In the first case, we would write a true distribution Pθ0,η0
rather than as P . The asymptotic covariance matrix in the preceding display
would then be at least equal to the inverse of the efficient information ma-
trix. It would be equal to this if ψθ,η is proportional to the the efficient score
function for θ.

Example 6.19 (Regression). Let a typical observation be a pair X = (Y, Z)
whose distribution is described structurally by the equation Y = fθ(Z) + e
for (Z, e) having a distribution η such that Eη(e|Z) = 0.

Consider the estimation equation defined by

ψθ,η(x) =
(
y − fθ(z)

)
wθ,η(z),

for given weight functions wθ,η. We have

Pθ0,η0ψθ0,η = Eθ0,η0
[
Eθ0,η0

(
Y − fθ0(Z)

)
|Z

]
wθ0,η(Z) = 0.

Thus the drift term in the preceding theorem vanishes. To obtain an ef-
ficient estimator we must choose the weight function equal to wθ,η(z) =
ġθ(z)/Eη(e2|Z = z) and use estimators for η such that wθ,η̂ is consistent for
this weight function, but (almost) any choice of the weight function will work
to obtain an asymptotically normal estimator. One explanation for the fact
that these estimating equations are unbiased is that the functions belong to
the orthocomplement of the tangent set.
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In a number of models, such as the regression model in the preceding
example, setting up good estimating equations is easy. In general, calcula-
tion of the tangent set of a model, or rather its orthocomplement can be
of help. First, if some function ψθ,η is orthogonal to the tangent set due to
the nuisance parameters, its mean Pθ,ηψθ,η̂ should be fairly insensitive to the
estimator η̂, because by definition a nuisance score gives the change in the
underlying distribution if perturbing the nuisance parameter. One attempt
to make this idea formal is to write

Pθ,ηψθ,η̂ = (Pθ,η − Pθ,η̂)(ψθ,η̂ − ψθ,η)− Pθ,η
[pθ,η̂ − pθ,h

pθ,η
−Bθ,ηh

]
ψθ,η, (6.5)

where Bθ,ηh can be any η-score if ψθ,η is orthogonal to the nuisance tangent
space. If Bθ,ηh can approximate (pθ,η̂ − pθ,h)/pθ,η, then we might hope that
the right side of the display is of the order OP (d(η̂, η)2), for the metric d
giving the approximation. Then the drift term will give no contribution to
the limit distribution if d(η̂, η) = oP (n−1/4). This informal argument can
be useful, but it should not be concluded that a n−1/4-rate for the nuisance
parameter is “minimal” in some sense. Special properties of the model, as in
the regression example, may make the drift term zero for any η̂. The point
is that Pψθ,η̂ is an integrated quantity and it is far to crude to analyse it
by a Taylor expansion, replacing the integrand by its absolute value after
subtracting the beginning of the expansion.

Nevertheless, we can formalize the expansion, for instance, as follows.
Given some semiparametric model P = {Pθ,η: θ ∈ Θ, η ∈ H} with H a
metric space, suppose that, for some nonnegative numbers α, β, γ,

Pθ,η‖ψθ,η̂ − ψθ,η‖2 = OP
(
d(η̂, η)2α

)

inf
g∈lin ηṖPθ,η

Pθ,η

[pθ,η̂ − pθ,η
pθ,η

− g
]2

= OP
(
d(η̂, η)2β+2γ)

Pθ,η

[pθ,η̂ − pθ,η
pθ,η

]2
= OP

(
d(η̂, η)2β

)
.

Then Pθ,ηψθ,η̂ = OP
(
d(η̂, η)δ

)
for δ = (a ∨ γ) + β.

If the underlying measure P = Pθ,η belongs to a semiparametric model,
then it is worth while to adapt the conditions of Theorem 6.18 somewhat
and to use the differentiability of the model in θ. This leads to the follow-
ing theorem, which we shall apply in the next lectures to construct efficient
estimators or analyse the maximum likelihood estimator. We now make the
disappearance of the bias term part of the conditions.

Let ψθ,η:X → R be measurable functions and and let η̂n be estimators
such that

Pθ̂n,η
ψθ̂n,η̂n

= oP
(
n−1/2 + ‖θ̂n − θ‖

)
, (6.6)

Pθ,η
∥
∥ψθ̂n,η̂n

− ψθ,η
∥
∥2 P→ 0, Pθ̂n,η

∥
∥ψθ̂n,η̂n

∥
∥2 = OP (1). (6.7)
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The second condition (6.7) merely requires that the “plug-in” estimator
ψθ,η̂n

is a consistent estimator for the “true” estimating function ψθ,η. If
Pθ,ηψθ,η = 0, as we shall require, then the first condition (6.6) can be under-
stood as requiring that the “bias” of the plug-in estimator, due to estimating
the nuisance parameter, converges to zero faster than 1/

√
n. Note that the

derivative of θ → Pθ,ηψθ,η̂ should converge to the derivative of θ → Pθ,ηψθ,η,
which is zero, and hence, informally the condition (6.6) must be equivalent
to √

nPθ,ηψθ,η̂n

P→ 0, . (6.8)

Theorem 6.20. Suppose that the model {Pθ,η: θ ∈ Θ} is differentiable in
quadratic mean with respect to θ at (θ, η). Let the matrix Pθ,ηψθ,η �̇θ,η be
nonsingular. Assume that (6.6) and (6.7) hold. Furthermore, suppose that
there exists a Donsker class with square-integrable envelope function that con-
tains every function ψθ̂n,η̂n

with probability tending to 1. Then a zero θ̂n of
θ → Pnψθ,η̂n that is consistent for θ satisfies that

√
n(θ̂n−θ) is asymptotically

normal with mean zero and covariance matrix

(Pθ,ηψθ,η �̇Tθ,η)
−1Pψθ,ηψ

T
θ,η(Pθ,η �̇θ,ηψ

T
θ,η)

−1.

Proof. Let Gn(θ′, η′) =
√
n(Pn−Pθ,η)ψθ′,η′ be the empirical process indexed

by the functions ψθ′,η′ . By the assumption that the functions ψθ̂,η̂ are con-
tained in a Donsker class, together with (6.7),

Gn(θ̂n, η̂n) = Gn(θ, η) + oP (1).

(Cf. Theorem 6.15.) By the defining relationship of θ̂n and the “no-bias”
condition (6.6), this is equivalent to

√
n(Pθ̂n,η

− Pθ,η)ψθ̂n,η̂n
= Gn(θ, η) + oP

(
1 +

√
n‖θ̂n − θ0‖

)
.

The remainder of the proof consists of showing that the left side is asymptot-
ically equivalent to

(
V + oP (1)

)√
n(θ̂n − θ) for V = Pθ,ηψθ,η �̇

T
θ,η, from which

the theorem follows. The difference of the left side of the preceding display
and V

√
n(θ̂n − θ) can be written as the sum of three terms:

√
n

∫
ψθ̂n,η̂n

(p1/2
θ̂n,η

+ p
1/2
θ,η )

[
(p1/2
θ̂n,η

− p1/2θ,η )− 1
2 (θ̂n − θ)T �̇θ,η p1/2θ,η

]
dµ

+
∫
ψθ̂n,η̂n

(p1/2
θ̂n,η

− p1/2θ,η ) 1
2 �̇
T
θ,η p

1/2
θ,η dµ

√
n(θ̂n − θ)

−
∫

(ψθ̂n,η̂n
− ψθ,η) �̇Tθ,η pθ,η dµ

√
n(θ̂n − θ).

The first and third term can easily be seen to be oP
(√
n‖θ̂n − θ‖

)
by apply-

ing the Cauchy–Schwarz inequality together with the differentiability of the
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model and (6.7). The square of the norm of the integral in the middle term
can for every sequence of constants mn →∞ be bounded by a multiple of

m2
n

∫
‖ψθ̂n,η̂n

‖ p1/2θ,η |p
1/2
θ̂n,η

− p1/2θ,η | dµ2

+
∫
‖ψθ̂n,η̂n

‖2(pθ̂n,η
+ pθ,η) dµ

∫

‖�̇θ,η‖>mn

‖�̇θ,η‖2 pθ,η dµ.

In view of (6.7), the differentiability of the model in θ and the Cauchy–
Schwarz inequality, the first term converges to zero in probability provided
mn →∞ sufficiently slowly to ensure that mn‖θ̂n−θ‖ P→ 0. (Such a sequence
exists. If Zn P→ 0, then there exists a sequence εn ↓ 0 such that P

(
|Zn| >

εn
)
→ 0. Then ε−1/2

n Zn
P→ 0.) In view of the last part of (6.7), the second

term converges to zero in probability for every mn →∞. This concludes the
proof of the theorem. �


In the preceding theorems we have assumed that the realizations of the
functions ψθ̂,η̂ are contained in a fixed Donsker class, with high probability.
This condition is overly strong. As we pointed out in Lecture 6, what is needed
is that the entropy of these collections of realizations is asymptotically stable
and not too big. Hence the condition can be replaced by the condition that
there exist classes Fn of functions satisfying the conditions of Theorem 6.16
such that ψθ̂,η̂ is contained in Fn with probability tending to one. One further
extension is to permit ψθ,η to change with n itself.

Notes. See the notes to Lecture 5. The general topic of Section 6.4 is taken
from [42], but the main result here is new.



7. Lecture:
Efficient Score and One-step Estimators

In this lecture we consider the construction of efficient estimators in semi-
parametric models using the efficient score equation or the related one-step
method. We apply it to the linear errors-in-variables model and the symmet-
ric location model.

7.1 Efficient Score Estimators

The most important method to estimate the parameter in a parametric model
is the method of maximum likelihood, and it can usually be reduced to solving
the score equations

∑n
i=1�̇θ(Xi) = 0, if necessary in a neighbourhood of an

initial estimate. A natural generalization to estimating the parameter θ in a
semiparametric model {Pθ,η: θ ∈ Θ, η ∈ H} is to solve θ from the efficient
score equations

n∑

i=1

�̃θ,η̂n
(Xi) = 0. (7.1)

Here we use (a version of) the efficient score function instead of the ordinary
score function, and we substitute an estimator η̂n for the unknown nuisance
parameter. Alternatively, it may be more workable to find an “estimator”
η̂n(θ) for η acting as if θ is known already and next solve θ from the “profile
efficient score equations”

n∑

i=1

�̃θ,η̂n(θ)(Xi) = 0.

A solution θ̂n also satisfies the efficient score equation (7.1) if we set η̂n =
η̂n(θ̂n). This choice of η̂n may beat the purpose of finding an estimator θ̂n,
but this remark does indicate that to prove something about θ̂n it is not
necessary to consider the profile efficient score equation. Hence we concentrate
on solutions of (7.1).

We can derive the asymptotic normality of θ̂n from Theorem 6.20. Here
Pθ,ηψ̃θ,η �̇

T
θ,η is the efficient information matrix Ĩθ,η and hence the asymptotic

covariance matrix in this theorem reduces to Ĩ−1
θ,η .
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Theorem 7.1. Suppose that conditions of Theorem 6.20 are satisfied with
ψθ,η = �̃θ,η. Then a consistent sequence of zeros θ̂n of θ → Pn�̃θ,η̂n

is asymp-
totically efficient for ψ(Pθ,η) = θ at (θ, η).

We remark again that the condition that the functions �̃θ,η are contained
in a fixed Donsker class can be relaxed along the lines of Theorem 6.16.

7.2 One-step Estimators

Theorem 7.1 applies to many examples, but its conditions are not the minimal
ones to ensure existence of asymptotically efficient estimators. There are may
ways in which its conditions can be relaxed, all leading to estimators that
are less natural but have better properties, in theory. We shall immediately
go to the most extreme modification, which can be shown to work whenever
there is anything that works.

Suppose that we are given a sequence of initial estimators θ̃n that is
√
n-

consistent for θ. We can assume without loss of generality that the estimators
are discretized on a grid of mesh width n−1/2, which will simplify the con-
structions and proof. Then the one-step estimator is defined as

θ̂n = θ̃n −
( n∑

i=1

�̂n,θ̃n,i
�̂T
n,θ̃n,i

(Xi)
)−1 n∑

i=1

�̂n,θ̃n,i
(Xi),

where �̂n,θ,i is an estimator for �̃θ,η. The estimator θ̂n can be considered a one-
step iteration of the Newton-Raphson algorithm for solving an approximation
to the equation

∑
�̃θ,η(Xi) = 0 with respect to θ, starting at the initial guess

θ̃n. For the benefit of the simple proof, we have made the estimators �̂n,θ,i
for the efficient score function dependent on the index i. In fact, we shall
use only two different values for �̂n,θ,i, one for the first half of the sample,
and another for the second half. Given estimators �̂n,θ = �̂n,θ(·;X1, . . . , Xn)
define, with m = �n/2�,

�̂n,θ,i =

{
�̂m,θ(·;X1, . . . , Xm) if i > m

�̂n−m,θ(·;Xm+1, . . . , Xn) if i ≤ m.

Thus, for Xi belonging to the first half of the sample, we use an estimator
�̂n,θ,i based on the second half of the sample, and vice versa. This sample-
splitting trick is convenient in the proof, because the estimator “of η” used in
�̂n,θ,i is always independent ofXi, simultaneously forXi running through each
of the two halves of the sample. The trick is not recommended in practice.

The conditions of the preceding theorem can now be relaxed in two ways:
we can drop the Donsker condition and we need an analogue of the “no-bias”
condition (6.6) only for deterministic sequences θn. We assume that, for every
deterministic sequence θn = θ +O(n−1/2),
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√
nPθn,η �̂n,θn

P→ 0, Pθn,η

∥
∥�̂n,θn

− �̃θn,η

∥
∥2 P→ 0. (7.2)

∫ ∥
∥
∥�̃θn,ηdP

1/2
θn,η

− �̃θ,ηdP 1/2
θ,η

∥
∥
∥

2
→ 0. (7.3)

Theorem 7.2. Suppose that the model {Pθ,η: θ ∈ Θ} is differentiable in
quadratic mean with respect to θ at (θ, η), let the efficient information matrix
Ĩθ,η be nonsingular. Assume that (7.2) and (7.3) hold. Then the sequence θ̂n
is asymptotically efficient at (θ, η).

Proof. Fix a deterministic sequence of vectors θn = θ + O(n−1/2). By the
sample-splitting, the first half of the sum

∑
�̂n,θn,i(Xi) is a sum of condition-

ally independent terms, given the second half of the sample. Thus,

Eθn,η

(√
mPm

(
�̂n,θn,i − �̃θn,η

)
|Xm+1, . . . , Xn

)
=
√
mPθn,η �̂n,θn,i,

varθn,η

(√
mPm

(
�̂n,θn,i − �̃θn,η

)
|Xm+1, . . . , Xn

)
≤ Pθn,η

∥
∥�̂n,θn,i−�̃θn,η

∥
∥2
.

Both expressions converge to zero in probability by assumption (7.2). We
conclude that the sum inside the conditional expectations converges condi-
tionally, and hence also unconditionally, to zero in probability. By symmetry,
the same is true for the second half of the sample, whence

√
nPn

(
�̂n,θn,i − �̃θn,η

)
P→ 0.

We have proved this for the probability under (θn, η), but by contiguity the
convergence is also under (θ, η).

Combining the preceding display with the result of Lemma 7.3, we find
that √

nPn

(
�̂n,θn,i − �̃θ,η

)
+ Ĩθ,η

√
n(θn − θ) P→ 0.

In view of the discretised nature of θ̃n, this remains true if the determinis-
tic sequence θn is replaced by θ̃n. This follows, because, for a given M , on
the event {‖√nθ̃n − θ‖ ≤ M} the estimator θ̃n can take on only finitely
many values, with the total number of different values being bounded inde-
pendent of n. Thus an expression of the type Gn(θ̃n) can be bounded above
by supθn

Gn(θn) for the supremum ranging over a finite number of points. If
each of the sequences Gn(θn) converges to zero in probability, then Gn(θ̃n)
converges to zero in probability on the event {‖√nθ̃n− θ‖ ≤M}. Finally, by
the assumed

√
n-consistently of θ̃n, we can fix M such that the probability

of this event is arbitrarily close to 1.
Next we study the estimator for the information matrix. For any vector

h ∈ R
k, the triangle inequality yields
∣
∣
∣
∣

√
Pm(hT �̂n,θn,i)2 −

√
Pm(hT �̃θn,η)2

∣
∣
∣
∣

2

≤ Pm(hT �̂n,θn,i − hT �̃θn,η)
2.
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By (7.2), the conditional expectation under (θn, η) of the right side given
Xm+1, . . . , Xn converges in probability to zero. A similar statement is valid
for the second half of the observations. Combining this with (7.3) and the
law of large numbers, we see that

Pn�̂n,θn,i�̂
T
n,θn,i

P→ Ĩθ,η.

In view of the discretised nature of θ̃n, this remains true if the deterministic
sequence θn is replaced by θ̃n.

The theorem follows upon combining the results of the last two paragraphs
with the definition of θ̂n. �


Lemma 7.3. Suppose that the model {Pθ,η: θ ∈ Θ} is differentiable in
quadratic mean with respect to θ at (θ, η), let the efficient information
matrix Ĩθ,η be nonsingular, and assume that (7.3) holds. Then, for any
θn = θ +O(n−1/2),

√
nPn

(
�̃θn,η − �̃θ,η

)
+
√
nĨθ,η(θn − θ) P→ 0.

Proof. By the definition of the efficient score function as an orthogonal pro-
jection, Pθ,η �̃θ,η �̇Tθ,η = Ĩθ,η. We shall use this identity several times in the
following proof.

The lemma follows from adding the two assertions

√
nPn

(
�̃θn,η

(
1−

p
1/2
θn,η

p
1/2
θ,η

))
+ 1

2 Ĩθ,η
√
n(θn − θ) P→ 0

√
nPn

(
�̃θn,η

p
1/2
θn,η

p
1/2
θ,η

− �̃θ,η
)

+ 1
2 Ĩθ,η

√
n(θn − θ) P→ 0.

(7.4)

For the second assertion we note that the variance of the variable on the left
side under (θ, η) converges to zero by (7.3). Furthermore, the mean of this
variable is equal to

√
n

∫
�̃θn,ηp

1/2
θn,η

p
1/2
θ,η dµ =

√
n

∫
�̃θn,ηp

1/2
θn,η

(p1/2θ,η − p
1/2
θn,η

) dµ.

This is asymptotically equivalent to − 1
2

√
nĨθ,η(θn− θ) by (7.3), the differen-

tiability of the model and the continuity of the inner product.
We prove the first assertion in (7.4) also by computing moments, but this

time under the measures obtained by letting X1, . . . , Xn be an i.i.d. sample
from the probability measure with density qn = cnp

1/2
θn,η

p
1/2
θ,η , where cn is the

norming constant. By the differentiability of the model we have

c−1
n =

∫
p
1/2
θn,η

p
1/2
θ,η dµ = 1− 1

2

∫
(p1/2θn,η

− p1/2θ,η )2 dµ
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= 1− 1
2 (θn − θ)T Iθ,η(θn − θ) + o(n−1).

From an expansion of the log likelihood ratio of the n-fold product measure
Qnn corresponding to qn and the n-fold product Pnθ,η, we see that these product
measures are contiguous. Thus it suffices to prove convergence in probability
to zero under Qnn. We have

Qnn

∣
∣
∣
√
nPn

(
�̃θn,η

(
1−

p
1/2
θn,η

p
1/2
θ,η

))
+
√
n 1

2Pn�̃θn,η �̇
T
θ,η(θn − θ)

∣
∣
∣

≤ cn
∫
|�̃θn,ηp

1/2
θn,η

|
√
n
∣
∣
∣(p1/2θn,η

− p1/2θ,η )− 1
2 (θn − θ)T �̇θ,ηp1/2θ,η

∣
∣
∣ dµ→ 0,

by the differentiability of the model, (7.3) and the fact that cn → 1. Finally,
it suffices to show that the sequence Pn�̃θn,η �̇

T
θ,η converges in probability to

Ĩθ,η under Qnn. For this we first note that

EQn
Pn�̃θn,η �̇

T
θ,η = cn

∫
�̃θn,ηp

1/2
θn,η

�̇Tθ,ηp
1/2
θ,η dµ→ Ĩθ,η,

varQn
Pn�̃θn,η1‖�̃θ,η‖≤M �̇

T
θ,η1‖�̇θ,η‖≤M

≤ cnM2 1
n

∫
‖�̃θn,η‖p

1/2
θn,η

‖�̇θ,η‖p1/2θ,η dµ→ 0,

for every fixed M . We also have that

EQn
Pn�̃θn,η1‖�̃θ,η‖>M �̇

T
θ,η1‖�̇θ,η‖>M → 0,

as n→∞, followed by M →∞. The proof is complete upon combining the
last two displays. �


The theorems reduce the problem of efficient estimation of θ to estimation
of the efficient score function. At first sight we have made the problem harder.
The estimator of the efficient score function must satisfy a “no-bias” and a
consistency condition. The consistency is usually easy to arrange, but the no-
bias condition, such as (7.2), is connected to the structure and the size of the
model, as the bias must converge to zero at a rate faster than 1/

√
n. It may

happen that the bias is identically zero and then we only need to produce a
consistent estimator of the efficient score function. In general, we can at best
hope that the bias is a second order term, just as in our discussion of general
estimating equations in Lecture 6.

The good news is that if an efficient estimator sequence exists, then it
can always be constructed by the one-step method. In that sense the no-bias
condition is necessary.
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Theorem 7.4. Suppose that the model {Pθ,η: θ ∈ Θ} is differentiable in
quadratic mean with respect to θ at (θ, η), let the efficient information ma-
trix Ĩθ,η be nonsingular, and assume that (7.3) holds. Then the existence of
an asymptotically efficient sequence of estimators of ψ(Pθ,η) = θ implies the
existence of a sequence of estimators �̂n,θ satisfying (7.2).

Proof. An efficient estimator sequence Tn must be asymptotically linear in
the efficient influence function. By Lemma 7.3 and the continuity of θ → Ĩθ,η
this implies that, for every θn = θ +O(n−1/2),

√
n(Tn − θn) = Gnψ̃θn,η + oP (1),

where ψ̃θ,η = I−1
θ,η �̃θ,η. For simplicity we assume that this expansion is actually

true in the stronger sense that, for every θn = θ +O(n−1/2),

Eθn,η

[√
n(Tn − θn)−Gnψ̃θn,η

]2 → 0.

The general case can be handled by a truncation argument, which turns
convergence in probability in convergence in second mean. (See [14].) Fur-
thermore, to simplify notation we assume that Tn is permutation symmetric
in its arguments.

In view of Hájek’s projection lemma (which gives the orthogonal projec-
tion onto the space of all sums

∑n
i=1f(Xi)), our assumption implies that

Eθn,η

[ n∑

i=1

Eθn,η

(√
n(Tn − θn)|Xi

)
− Eθn,η

√
n(Tn − θn)−Gnψ̃θn,η)

]2
→ 0,

which can be rewritten as

Eθn,η

[
Eθn,η

(
n(Tn − θn)|X1

)
− Eθn,ηn(Tn − θn)− ψ̃θn,η(X1)

]2
→ 0.

Rather than estimate ψ̃θ,η we can therefore “estimate” the function x →
Eθ,η

(
n(Tn − θ)|X1 = x

)
and its expectation. Given kn independent copies

Yj1, . . . , Yjn of the sample X1, . . . , Xn, define

Jn(x) =
1
kn

kn∑

j=1

n
(
Tn(x, Yj2, . . . , Yjn)− Tn(Yj1, . . . , Yjn)

)
.

Then Eθn,η

(
Jn(X1)|X1) is identical to Eθn,η

(
n(Tn−θn)|X1

)
−Eθn,ηn(Tn−θn)

and hence

Eθn,η

[
Jn(X1)− Eθn,η

(
n(Tn − θn)|X1

)
+ Eθn,ηn(Tn − θn)

]2

=
1
kn

Eθn,ηn
2(Tn(X1, Yj2, . . . , Yjn)− Tn(Yj1, . . . , Yjn)

)2 � n

kn
,
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because nEθn,η(Tn−θn)2 is bounded. This converges to zero for e.g. kn = n2.
Then the estimator Jn is based on mn = knn = n3 observations. We define
an estimator based on m observations, for every m ∈ N, by J̃m = J
m1/3�.
A sequence θ̃m = θ +O(m−1/2) yields a sequence θn = θ +O(n−3/2) on our
original scale and hence is covered by the previous calculations. We conclude
that, for every θn = θ +O(n−1/2),

Eθn,η

∫
(J̃n − ψ̃θn,η)

2(x) pθn,η(x) dµ(x) → 0.

Thus the sequence J̃n is consistent as desired. To find a sequence of estimators
that is both consistent and has small bias, we replace J̃n by, with m = �n/2�,

�̂n,θ(x) = J̃mn
(x)

+ Tn−mn
(Xmn+1, . . . , Xn)− θ − 1

n−mn

n∑

i=mn+1

J̃mn
(Xi).

By assumption this is equivalent to

J̃mn(x) +
1

n−mn

n∑

i=mn+1

(ψ̃θn,η − J̃mn)(Xi) + oP (n−1/2)

J̃mn
(x)−

∫
J̃mn

pθn,η dµ+ oP (n−1/2),

by comparing conditional means and variances givenX1, . . . , Xmn , and where
the oP (n−1/2)-term does not depend on x. Thus the estimator �̂n,θ is both
consistent and has small bias. �


7.3 Symmetric location

Suppose that we observe a random sample from a density η(x − θ) that
is symmetric about θ. In Example 2.17 it was seen that the efficient score
function for θ is the ordinary score function,

�̃θ,η(x) = −η
′

η
(x− θ).

We can apply Theorem 7.2 to construct an asymptotically efficient estimator
sequence for θ under the minimal condition that the density η has finite
Fisher information for location.

First, as an initial estimator θ̃n, we may use a discretized Z-estimator,
solving Pnψ(x − θ) = 0 for a well-behaved, symmetric function ψ. For in-
stance, the score function of the logistic density. The

√
n-consistency can be

established by the techniques of Lectures 4 and 5.
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Second, it suffices to construct estimators �̂n,θ that satisfy (7.2). By sym-
metry, the variables Ti = |Xi− θ| are, for a fixed θ, sampled from the density
g(s) = 2η(s)1{s > 0}. We use these variables to construct an estimator k̂n
for the function g′/g, and next we set

�̂n,θ(x;X1, . . . , Xn) = −k̂n
(
|x− θ|;T1, . . . , Tn

)
sign(x− θ).

Since this function is skew-symmetric about the point θ, the bias condition
in (7.2) is satisfied, with a bias of zero. Since the efficient score function can
be written in the form

�̃θ,η(x) = −g
′

g

(
|x− θ|

)
sign(x− θ),

the consistency condition in (7.2) reduces to consistency of k̂n for the function
g′/g in that ∫ (

k̂n −
g′

g

)2
(s) g(s) ds P→ 0. (7.5)

Estimators k̂n can be constructed by several methods, a simple one being the
kernel method of density estimation. For a fixed twice continuously differen-
tiable probability density ω with compact support, a bandwidth parameter
σn, and further positive tuning parameters αn, βn and γn, set

ĝn(s) =
1
σn

n∑

i=1

ω
(s− Ti

σn

)
,

k̂n(s) =
ĝ′
n

ĝn
(s)1B̂n

(s),

B̂n =
{
s: |ĝ′

n(s)| ≤ αn, ĝn(s) ≥ βn, s ≥ γn
}
.

(7.6)

Then (7.2) is satisfied provided αn ↑ ∞, βn ↓ 0, γn ↓ 0 and σn ↓ 0 at
appropriate speeds. The proof consists of the usual manipulations of kernel
estimators. (See [42], page 398, for a precise statement, or one of the many
papers on this model.)

This particular construction shows that efficient estimators for θ exist un-
der minimal conditions. It is not necessarily recommended for use in practice.
However, any good initial estimator θ̃n and any method of density or curve
estimation may be substituted, and will lead to a reasonable estimator for θ,
which will be theoretically efficient under some regularity conditions.

Open Problem 7.5. It may be verified that the preceding construction gen-
eralize to higher dimensions. The problem of estimating θ from a sample of
observations from a density η(x− θ) on R

d such that η has finite Fisher in-
formation and η(x) = η(−x) is adaptive for any d ≥ 1. Theoretically, one can
estimate θ as well knowing η as not knowing η. However, in practice this ap-
pears to be nonsense. If d = 10, for instance, it cannot make sense to try and
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estimate η nonparametrically from n = 1000 observations and the preceding
construction will presumably yield bad estimators. The problem is to develop
a theory for this phenomenon, maybe using minimax bounds. Note that the
problem of estimating θ for d = 10 is by itself not difficult. For instance,
we could use an M -estimator and this will be asymptotically normal in the
usual way and the asymptotics will be reliable for n ≥ 30. See [32] and [31]
for further questions regarding the asymptotic information bounds.

7.4 Errors-in-Variables

Let the observations be a random sample of pairs (Xi, Yi) with the same
distribution as

X = Z + e

Y = α+ βZ + f,

for a bivariate normal vector (e, f) with mean zero and covariance matrix
Σ and a random variable Z with distribution η, independent of (e, f). Thus
Y is a linear regression on a variable Z which is observed with error. The
parameter of interest is θ = (α, β,Σ) and the nuisance parameter is η. To
make the parameters identifiable one can put restrictions on either Σ or η. It
suffices that η is not normal (where a degenerate distribution is considered
normal with variance zero); alternatively it can be assumed that Σ is known
up to a scalar.

Given (θ,Σ) the statistic ψθ(X,Y ) = (1, β)Σ−1(X,Y − α)T is sufficient
(and complete) for η. This suggests to define estimators for (α, β,Σ) as the
solution of the “conditional score equation” Pn�̃θ,η̂ = 0, for

�̃θ,η(X,Y ) = �̇θ,η(X,Y )− Eθ
(
�̇θ,η(X,Y )|ψθ(X,Y )

)
.

This estimating equation has the attractive property of being unbiased in the
nuisance parameter, in that

Pθ,η �̃θ,η′ = 0, every θ, η, η′.

Therefore, the “no-bias” condition is trivially satisfied, and the estimator η̂
need only be consistent for η (in the sense of (6.7)). One possibility for η̂
is the maximum likelihood estimator, which was shown to be consistent in
Lecture 5 in the case that Σ is known. This proof can be extended to the
case that Σ is unknown.

As the notation suggests, the function �̃θ,η is equal to the efficient score
function for θ. We can prove this by showing that the closed linear span of the
set of nuisance scores contains all measurable, square-integrable functions of
ψθ(x, y), because then projecting on the nuisance scores is identical to taking
the conditional expectation.
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The submodel t → Pθ,tη1+(1−t)η is well-defined for every 0 ≤ t ≤ 1 and
every η1 ∈ H. Its score function is the function

pθ,η1/pθ,η − 1

As is clear from the factorization theorem or direct calculation, it is a function
of the sufficient statistic ψθ(X,Y ). If some function b

(
ψθ(x, y)

)
is orthogonal

to all scores of this type and has mean zero, then, for every η1,

Eθ,η1b
(
ψθ(X,Y )

)
= Eθ,ηb

(
ψθ(X,Y )

)(pθ,η1
pθ,η

− 1
)

= 0.

Consequently, b = 0 almost surely by the completeness of ψθ(X,Y ). We
conclude that the closure of the linear span of the nuisance tangent space
contains all measurable, square-integrable functions of ψθ(x, y).

The efficient score function can be written in the form

�̃θ,η(x, y) = Qθ(x, y) + Pθ(x, y)E
(
Z|ψθ(X,Y )

)

for polynomials Qθ and Pθ of orders 2 and 1, respectively. The main work is
now to show that the class of all functions of this type, when η ranges over
a large class of distributions, is Donsker. Because we already know that η̂ is
consistent for the weak topology, it is enough to show this for η ranging over
a weak neighbourhood of the true mixing distribution. The following lemma
is the main part of the verification.

Lemma 7.6. For every 0 < α ≤ 1 and every probability distribution η0 on
R and compact K ⊂ (0,∞), there exists an open neighbourhood U of η0 in
the weak topology such that the class F of all functions

(x, y) → (a0 + a1x+ a2y)
∫
z ez(b0+b1x+b2y) e−cz2 dη(z)
∫
ez(b0+b1x+b2y) e−cz2 dη(z)

,

with η ranging over U , c ranging over K and a and b ranging over compacta
in R

3, satisfies

logN[]
(
ε,F , L2(P )

)
≤ C

(1
ε

)V (
P
(
1 + |x|+ |y|

)5+2α+4/V+δ
)V/2

,

for every V ≥ 1/α, every measure P on R
2 and δ > 0, and a constant C

depending only on α, η0, U , V , the compacta, and δ.

Proof. We only give a sketch of the main steps. See Lemma 7.3 in [25] for
the details. First consider the functions

t→ gc,η(t) =
∫
zezt

2
e−cz2 dη(z)

∫
ezte−cz2 dη(z)

.
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By some clever applications of Jensen’s and other inequalities it can be proved
that there exists a weak neighbourhood U of η0 such that, for η ∈ U and
c ∈ K, ∣

∣gc,η(t)
∣
∣ ≤ C(1 + |t|),

∣
∣g′
c,η(t)

∣
∣ ≤ C(1 + |t|)2.

The classical bounds of Kolmogorov give estimates on the covering numbers
N(ε,Fj , ‖ · ‖) of the classes Fj of all functions f : [j, j + 1] → R such that
‖f‖∞∨‖f ′‖∞ ≤Mj for some constant Mj . In the present situation we apply
these boundeds with Fj the restrictions of the functions gc,η to the intervals
[j, j + 1] and with Mj = (1 + |j|)2.

Given an εj-net fj,1, . . . , fj,Nj
over Fj we can construct brackets for the

functions f : R → R by first forming brackets [fj,i − εj , fj,i + εj ] on each
interval [j, j + 1) and next glueing these brackets together in every possible
combination. Naturally, we choose εj big enough so that for all but finitely
many intervals we need to use only one bracket, because otherwise the number
of brackets would be infinite. We can optimize the numbers εj and Mj such
that resulting brackets on R are ε-brackets relative to the L2(Q)-norm and
such that they are almost a minimal set of ε-brackets, for Q the measure
constructed below.

For fixed (a, b) the functions fa,b,c,η are essentially the functions gc,η,
because

fa,b,c,η(x, y) = (a0 + a1x+ a2y)gc,η(b0 + b1x+ b2y).

A bracket [l, u] for the functions gc,η yields a bracket for the functions fa,b,c,η
of the form
[
(a0 + a1x+ a2y)+l(b0 + b1x+ b2y)− (a0 + a1x+ a2y)−u(b0 + b1x+ b2y),

(a0 + a1x+ a2y)+u(b0 + b1x+ b2y)− (a0 + a1x+ a2y)+l(b0 + b1x+ b2y)
]
.

Its size in L2(P ) is equal to the size of [l, u] in L2(Q) for the measure Q
defined by

Q(B) =
∫

1B(b0 + b1x+ b2y)(a0 + a1x+ a2y)2 dP (x, y).

Thus we can construct the desired brackets for the functions fa,b,c,η as c and
η vary, for any fixed value (a, b).

For fixed (x, y) the dependence (a, b) → fa,b,c,η(x, y) is Lipschitz of order
β = α/2 with Lipschitz constant h(x, y) = (1 + |x|+ |y|)2+2β . Now construct
brackets over the class of all fa,b,c,η by first choosing an ε1/β/‖h‖P,2-net
over the set of all (a, b), next for every (ai, bi) in this net choose a minimal
number of brackets l, u] over the class of all fai,bi,c,η and finally form the
brackets

[
l − εh/‖h‖P,2, u + εh/‖h‖P,2]. Because we need only of the order

(1/ε)6/β points (ai, bi) this last step hardly increases the entropy. �
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Notes. Theorem 7.6 is due to [14]. The semiparametric one-step method has
a long history, starting with special constructions in the symmetric location
model.



8. Lecture:
Rates of Convergence

In this lecture we apply maximal inequalities for empirical processes to obtain
rates of convergence of minimum contrast estimators, in particular in semi-
parametric models. These rates are of interest by themselves, but will also
be needed to prove the asymptotic normality of semiparametric likelihood
estimators in certain models.

8.1 A General Result

The set-up is the same as the one in Lecture 5 on consistency. Let Θ be a
metric space and for each θ ∈ Θ, let mθ:X → R be a measurable function.
Suppose that we are interested in the maximizer θ̂ of θ → Pnmθ. We may
expect that this converges in probability to the maximizer θ0 of the limiting
criterion function θ → Pmθ. It is useful to picture the random criterion
function Pnmθ as the sum of its limit and the scaled empirical process

Pnmθ = Pmθ +
1√
n

Gnmθ.

Because Pmθ is maximal at θ0 we could picture the function θ → Pmθ as
an inverse parabola with its top at θ0. Without the second, random term
on the right, the estimator θ̂ would always choose the top of the parabola,
but the fluctuations may pull the maximum of Pnmθ away from θ0. It is the
size of the fluctuations that determines how far. If Pmθ ≈ −d(θ, θ0)2 and
sup

{
Gnmθ: d(θ, θ0) ≤ δ

}
≈ φn(δ), then d(θ̂, θ0) will probably be approxi-

mately equal to the value δ that balances the positive and negative parts
of

−δ2 +
1√
n
φn(δ).

In other words, we expect that d(θ̂, θ0) ≈ δn for φn(δn) ≈ √nδ2n. The following
theorem makes this precise.

As for the consistency results, we do not need θ̂ to maximize Pnmθ. We
only need that Pnmθ̂ ≥ Pnmθ0 .
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Theorem 8.1. Suppose that, for all sufficiently small d(θ, θ0) all sufficiently
small δ > 0 and a function φn such that φn(cδ) ≤ cαφn(δ) for all c > 1, and
some α < 2,

P (mθ −mθ0) ≤ −d2(θ, θ0),

E∗ sup
d(θ,θ0)<δ

∣
∣Gn(mθ −mθ0)

∣
∣ ≤ φn(δ).

Then Pnmθ̂ ≥ Pnmθ0 and θ̂n P→ θ0 together imply that d(θ̂n, θ0) = OP (δn)
for every δn satisfying φn(δn) ≤ √nδ2n.

Proof. For each n, the parameter space (minus the point θ0) can be parti-
tioned into the “shells” Sj,n = {θ: 2j−1δn < d(θ, θ0) ≤ 2jδn} with j ranging
over the integers. If d(θ̂n, θ0) is larger than 2Mδn for a given integer M , then
θ̂n is in one of the shells Sj,n with j ≥M . In that case the supremum of the
map θ → Pnmθ −Pnmθ0 over this shell is nonnegative by the property of θ̂n.
Conclude that, for every η > 0,

P∗
(
d(θ̂n, θ0) > 2Mδn

)
≤

∑

j≥M
2jδn≤η

P∗
(

sup
θ∈Sj,n

(
Pnmθ − Pnmθ0

)
≥ 0

)

+ P∗(2d(θ̂n, θ0) ≥ η
)
.

Because the sequence θ̂n is consistent for θ0, the second probability on the
right converges to 0 as n → ∞ for every η > 0. Choose η > 0 small enough
that the first condition of the theorem holds for every d(θ, θ0) ≤ η and the
second for every δ ≤ η. Then for every j involved in the sum, we have, for
every θ ∈ Sj,n,

Pmθ − Pmθ0 ≤ −d2(θ, θ0) � −22j−2δ2n.

Therefore, the series may be bounded by

∑

j≥M
2jδn≤η

P∗
(∥
∥Gn(mθ −mθ0)

∥
∥
Sj,n

≥
√
n22j−2δ2n

)
�

∑

j≥M

φn(2jδn)√
nδ2n22j

�
∑

j≥M
2jα−2j ,

by Markov’s inequality, the definition of δn, and the fact that φn(cδ) ≤
cαφn(δ) for every c > 1. This expression converges to zero for every
M = Mn →∞. �


The first condition of the theorem can be expected to hold if θ0 is a point
of maximum of θ → Pmθ and this function is twice differentiable. More
generally, we can see it as simply defining the type of metric that we can
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work with. For instance, if mθ is a log likelihood under parameter θ and
P = Pθ0 , then Pθ0(mθ − mθ0) is the Kullback–Leibler divergence and we
can either use this directly (inspection of the proof of the theorem, shows
that it is not really necessary that d is a metric), or a metric whose square
dominates this, such as the Hellinger distance. It is well known that for any
pair of probability densities p and q,

P log(q/p) ≤ −h2(P,Q) = −
∫ (√

p−√q)2 dµ. (8.1)

Thus the Hellinger distance is a natural distance when considering rates of
convergence of maximum likelihood estimators.

The latter observation also points out a severe limitation of the theo-
rem: the choice of metrics with which it works is limited. For instance, in a
semiparametric model with parameter (θ, η) we might wish to prove that the
maximum likelihood estimator, or some other contrast estimator, possesses a√
n-rate of convergence. This will very rarely follow with the help of the pre-

ceding theorem, because the theorem will give a rate for the joint estimator
(θ̂, η̂), rather than for θ̂ only. The joint rate will typically be determined by
the rate of η̂ and this will typically be slower than

√
n.

Even a natural rate on the nuisance parameter η̂ may not be derivable
from the theorem, if “natural” refers to a particular, natural distance, which
does not combine well with the distance imposed by the theorem. As a con-
sequence, unfortunately, the applicability of the theorem to semiparametric
models is limited.

The second condition of the theorem requires a maximal inequality for
the modulus of the empirical process. Here the inequalities of Lecture 6 may
work if the size of the functions mθ −mθ0 is comparable to the size of the
envelope function of the class of all such functions with d(θ, θ0) < δ. This is
not always the case. The following maximal inequalities directly take the size
of the functions mθ −mθ0 into account.

Lemma 8.2. Let F be a class of measurable functions with ‖f‖∞ ≤M , and
Pf2 < δ2 for every f ∈ F . Then

E∗
P ‖Gn‖F � J[ ]

(
δ,F , L2(P )

)(
1 +

MJ[ ]
(
δ,F , L2(P )

)

δ2
√
n

)
.

The preceding lemma is sufficient for many examples. However, sometimes
the assumption that the class is uniformly bounded is restrictive. This can
be remedied by computing the size of the brackets relative to a larger norm.
Specifically, consider

‖f‖P,B =
√

2P (e|f | − 1− |f |).

The subscript “B” is for Bernstein, as this “norm” is essential in an expo-
nential inequality for sums due to Bernstein, which plays a major role in the
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proofs of maximal inequalities. Actually, the quantity ‖ · ‖P,B is not a norm,
as it does not satisfy the triangle inequality. However, we can use ‖ · ‖P,B as
a measure of the size of a function and hence as a measure of the size of a
bracket [l, u] by applying it to the function u − l. We can define an entropy
integral relative to it accordingly.

Lemma 8.3. Let F be a class of measurable functions with Pf2 < δ2 for
every f ∈ F . Then

E∗
P ‖Gn‖F � J[ ]

(
δ,F , ‖ · ‖P,B

)(
1 +

J[ ]
(
δ,F , ‖ · ‖P,B

)

δ2
√
n

)
.

8.2 Nuisance Parameters

In this section we consider the same problem of finding an upper bound on
the rate of convergence of a minimum contrast estimator θ̂, but now in the
presence of an estimated nuisance parameter. Using the “wrong”, estimated
contrast function should bring the rate of convergence down, but only if the
estimation of the nuisance parameter is the harder part of the problem. The
following theorem implements this idea.

The theorem is of interest not only because it takes care of problems with
nuisance parameters of the type as considered before, but also of certain
penalized minimum contrast estimators, in which the smoothing parameter
of the penalty can be thought of as an estimated nuisance parameter.

Consider “estimators” θ̂n contained in a metric space Θn satisfying, for a
given “estimators” η̂n contained in a metric space Hn,

Pnmθ̂n,η̂n
≥ Pnmθ0,η̂n

for given measurable functions x → mθ,η(x). This is valid, for example, for
θ̂n equal to the maximizer of the function θ → Pnmθ,η̂n over Θn, if this set
contains θ0.

Assume that the following conditions are satisfied for every θ ∈ Θn, every
η ∈ Hn and every δ > 0.

P
(
mθ,η −mθ0,η

)
� −d2

η(θ, θ0) + d2(η, η0), (8.2)

E∗ sup
dη(θ,θ0)<δ,d(η,η0)<δ

θ∈Θn,η∈Hn

∣
∣Gn(mθ,η −mθ0,η)

∣
∣ � φn(δ). (8.3)

Here d2
η(θ, θ0) may be thought of as the square of a distance, but the following

theorem is true for arbitrary functions θ → d2
η(θ, θ0). Usually dη does not

depend on η, but in this form the following theorem is flexible enough to apply
to penalized minimum contrast estimators, where the smoothing parameter
can be included in η.
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Theorem 8.4. Suppose that (8.3) is valid, for all sufficiently small δ > 0
and a function φn such that φn(cδ) ≤ cαφn(δ) for all c > 1, and some α < 2,
and for sets Θn ×Hn that contain (θ̂, η̂) with probability tending to 1. Then
dη̂(θ̂, θ0) = O∗

P

(
δn + d(η̂, η0)

)
for any sequence of positive numbers δn such

that φn(δn) ≤ √nδ2n for every n.

Proof. For each n ∈ N, j ∈ Z and M > 0 define a set

Sn,j,M

=
{

(θ, η) ∈ Θn×Hn: 2j−1δn < dη(θ, θ0) ≤ 2jδn, d(η, η0) ≤ 2−Mdη(θ, θ0)
}
.

Then the intersection of the events θ̂ ∈ Θn, η̂ ∈ Hn and dη̂(θ̂, θ0) ≥ 2M
(
δn +

d(θ̂, θ0)
)

is contained in the union of the events
{
(θ̂, η̂) ∈ Sn,j,M

}
over j ≥

M . By the definition of θ̂, the variable sup(θ,η)∈Sn,j,M
Pn(mθ,η − mθ0,η) is

nonnegative on the event
{
(θ̂, η̂) ∈ Sn,j,M

}
. Conclude that, for every δ > 0,

P∗
(
dη̂(θ̂, θ0) ≥ 2M

(
δn + d(η̂, η0)

)
, θ̂ ∈ Θn, η̂ ∈ Hn

)

≤
∑

j≥M
P∗
(

sup
(θ,η)∈Sj,n,M

Pn

(
mθ,η −mθ0,η

)
≥ 0

)
.

For every j involved in the sum, we have, for every (θ, η) ∈ Sj,n,M and every
sufficiently large M ,

P
(
mθ,η −mθ0,η

)
� −d2

η(θ, θ0) + d2(η, η0)

� −(1− 2−2M ) d2
η(θ, θ0) � −22j−2δ2n.

We now finish the proof as the proof of Theorem 8.1. �


For dη = d not depending on η condition (8.2) is implied by the conditions

P
(
mθ0,η −mθ0,η0

)
� −d2(η, η0),

P
(
mθ,η −mθ0,η0

)
� −d2(θ, θ0).

These two conditions are the natural requirement that the criterion function
(θ, η) → Pmθ,η behaves quadratically (relative to a distance) around the
point of maximum (θ0, η0).

8.3 Cox Regression with Current Status Data

Let us apply the Theorem 8.1 to one example, which illustrates the potential
and difficulties, and for which we shall need the rate of convergence in the next
lecture as input to proving asymptotic normality of the maximum likelihood
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estimator. It is again the Cox model, but this time with a type of censoring
that changes everything.

Suppose that we observe a random sample from the distribution of
X = (C,∆,Z), where ∆ = 1{T ≤ C}, that the “survival time” T and the
observation time C are independent given Z, and that T follows a Cox model.
The density of X relative to the product of FC,Z and counting measure on
{0, 1} is given by

pθ,Λ(x) =
(
1− exp(−eθT zΛ(c))

)δ( exp(−eθT zΛ(c))
)1−δ

.

We define this as the likelihood for one observation x and are interested in
the estimator (θ̂n, Λ̂n) obtained by maximizing the full likelihood. Here we
restrict the parameter θ to a compact Θ ⊂ R

k and restrict the parameter Λ
to the set of all cumulative hazard functions with Λ(τ) ≤M for a fixed large
constant M and τ the “end of the study” (the end point of the distribution
of C).

We make the following assumptions. The observation time C possesses
a Lebesgue density which is continuous and positive on an interval [σ, τ ]
and vanishes outside this interval. The true parameter Λ0 is continuously
differentiable on this interval, satisfies 0 < Λ0(σ−) ≤ Λ0(τ) < M , and is
continuously differentiable on [σ, τ ]. The covariate vector Z is bounded and
E cov(Z|C) > 0. The true parameter θ0 is an inner point of the parameter set
and the efficient information for θ is positive. (We make the latter condition
concrete in the next lecture.)

Lemma 8.5. Under the conditions listed previously, θ̂n is consistent and
‖Λ̂n − Λ0‖P0,2 = OP

(
n−1/3

)
.

Actually, we shall show that θ̂n also possesses a rate of convergence of at
least n−1/3. However, in the next lecture we shall see that the true rate is
n−1/2. It is a good illustration of what cannot be achieved with the preceding
rate theorem.

Remembering Trick 1 of Lecture 5 we apply Theorem 8.1 not with mθ

equal to the log likelihood (as would be the straightforward thing to do), but
with the functions

mθ,Λ = log (pθ,Λ + p0)/2,

where the 0 denote the “true” parameter (θ0, Λ0). The densities pθ,Λ are
bounded above by 1, and under our assumptions the density p0 is bounded
away from zero. It follows that the functions mθ,Λ(x) are uniformly bounded
in (θ, Λ) and x, which is of some help.

In Lemma 8.6 below we explicitly bound the bracketing numbers of the
class of functions mθ,Λ, from which we infer that these are finite. Therefore,
the class of functions mθ,Λ forms a Glivenko–Cantelli class. The parameter
set Θ is compact by assumption and the parameter set for Λ is compact for
the weak topology, also partly because of our assumptions. If the parameter
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(θ0, Λ0) were identifiable, we could conclude by Theorem 5.8 that (θ̂n, Λn)
is consistent. However, under our assumptions the parameter is not fully
identifiable: the parameter Λ0 is identifiable only on the interval (σ, τ). We
can still conclude that θ̂ P→ θ0 and that Λ̂(t) P→ Λ0(t) for every σ < t < τ . (The
convergence of Λ̂ at the points σ and τ does not appear to be guaranteed.)

By (8.1) the Kullback–Leibler divergence P0(mθ,Λ−m0) is dominated by
the square Hellinger distance between (pθ,Λ + p0)/2 and p0, and this in turn
is equivalent to the square Hellinger distance between pθ,Λ and p0. By a lucky
coincidence this distance translates easily in natural distances on θ and Λ.
By Lemma 8.7 below, we have

P0(mθ,Λ −m0) � −‖θ − θ0‖2 − ‖Λ− Λ0‖22.

Thus we can take minus the right side as the square distance in Theorem 8.1.
We only need to bound the modulus of the empirical process for this dis-
tance. By Lemma 8.6 below, the bracketing entropy of the class of functions
mθ,Λ is of the order (1/ε). By Lemma 8.2 we can choose the function φn in
Theorem 8.1 equal to

φn(δ) =
√
δ
(
1 +

√
δ

δ2
√
n

)
.

This leads to a convergence rate of n−1/3 for both ‖θ̂ − θ0‖ and ‖Λ̂− Λ0‖2.
We finish with the technical work in the form of two lemmas.

Lemma 8.6. Under the conditions listed previously, there exists a constant
C such that, for every ε > 0,

logN[]
(
ε, {mθ,Λ, (θ, Λ)}, L2(P0)

)
≤ C

(1
ε

)
.

Proof. First consider the class of functions mθ,Λ for a fixed θ. These functions
depend on Λ monotonely if considered separately for δ = 0 and δ = 1, Thus
a bracket Λ1 ≤ Λ ≤ Λ2 for Λ leads, by substitution, readily to a bracket for
mθ,Λ. Furthermore, since this dependence is Lipschitz, there exists a constant
D such that

∫ (
mθ,Λ1 −mθ,Λ2

)2
dFC,Z ≤ D

∫ τ

σ

(
Λ1(c)− Λ2(c)

)2
dc.

Thus, brackets for Λ of L2-size ε translate into brackets for mθ,Λ of L2(Pθ,Λ)-
size proportional to ε. It is well known that the set of all monotone functions
Λ: R → [0,M ] possesses a bracketing entropy of the order 1/ε. Therefore, we
can cover the set of all Λ by expC(1/ε) brackets of size ε.

Next, we allow θ to vary freely as well. The partial derivative ∂/∂θmθ,Λ(x)
is uniformly bounded in (θ, Λ, x). Therefore, if mθ,Λ is contained in a bracket
[l, u], then mθ′,Λ is contained in the bracket [l − ε, u + ε] for every θ′ with
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‖θ′ − θ‖ � ε. If the bracket [l, u] is of size ε, then the bracket [l − ε, u+ ε] is
of size 2ε. It follows that we can construct a set of brackets for the functions
mθ,Λ by first selecting an ε-net θ1, . . . , θp over Θ, then apply the procedure
of the first paragraph to find brackets for the functions mθi,Λ for each i, and
finally enlarging this bracket. The total number of brackets will be of the
order (1/ε)k exp c(1/ε). �

Lemma 8.7. Under the conditions listed previously there exist constants
C, ε > 0 such that, for all Λ and all ‖θ − θ0‖ < ε,

∫ (
p
1/2
θ,Λ − p

1/2
θ0,Λ0

)2
dµ ≥ C

∫ τ

σ

(Λ− Λ0)2(c) dc+ C‖θ − θ0‖2.

Proof. The left side of the lemma can be rewritten as
∫

(pθ,Λ − pθ0,Λ0)
2

(
p
1/2
θ,Λ + p

1/2
θ0,Λ0

)2 dµ.

Since p0 is bounded away from zero, and the densities pθ,Λ are uniformly
bounded, the denominator can be bounded above and below by positive con-
stants. Thus the Hellinger distance (in the display) is equivalent to the L2-
distance between the densities, which can be rewritten

2
∫ [

e−eθT zΛ(c) − e−eθT
0 zΛ0(c)

]2
dFY,Z(c, z).

Let g(t) be the function exp(−eθT zΛ(c)) evaluated at θt = tθ + (1 − t)θ0
and Λt = tΛ + (1 − t)Λ0, for fixed (c, z). Then the integrand is equal to(
g(1) − g(0)

)
2, and hence, by the mean value theorem, there exists 0 ≤ t =

t(c, z) ≤ 1 such that the preceding display is equal to

P0

(

e−Λt(c)eθT
t z

eθ
T
t z
[
(Λ− Λ0)(c)

(
1 + t(θ − θ0)T z

)
+ (θ − θ0)T zΛ0(c)

])2

.

Here the multiplicative factor e−Λt(c)eθT
t z

eθ
T
t z is bounded away from zero. By

dropping this term we obtain, up to a constant, a lower bound for the left
side of the lemma.

The remainder of the proof is best understood in terms of semiparametric
information. We adopt the notation of the information calculations given in
the next lecture. Since the function Qθ0,Λ0 is bounded away from zero and
infinity, we may add a factor Q2

θ0,Λ0
, and obtain the lower bound, up to a

constant,

P0

((
1 + t(θ − θ0)T z

)
Bθ0,Λ0(Λ− Λ0)(x) + (θ − θ0)T �̇θ0,Λ0(x)

)2
.

Here Bθ0,Λ0 is the score operator for the model, which we derive in the next
lecture. The function h =

(
1+ t(θ−θ0)T z

)
is uniformly close to 1 if θ is close

to θ0. Furthermore, for any function g and vector a,
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(
P0(Bθ0,Λ0g)a

T �̇θ0,Λ0

)2 =
(
P0(Bθ0,Λ0g)a

T (�̇θ0,Λ0 − �̃0)
)2

≤ P0
(
Bθ0,Λ0g

)2
aT (I0 − Ĩ0)a,

by the Cauchy–Schwarz inequality. Since the efficient information Ĩ0 is
positive-definite by assumption, the term aT (I0 − Ĩ0)a on the right can be
written aT I0ac for a constant 0 < c < 1. The lemma now follows by applica-
tion of Lemma 8.8 ahead.

Lemma 8.8. Let h, g1 and g2 be measurable functions such that c1 ≤ h ≤ c2
and (Pg1g2)2 ≤ cPg2

1Pg
2
2 for a constant c < 1 and constants c1 < 1 < c2

close to 1. Then
P (hg1 + g2)2 ≥ C(Pg2

1 + Pg2
2),

for a constant C depending on c, c1 and c2 that approaches 1−√c as c1 ↑ 1
and c2 ↓ 1.

Proof. We may first use the ineqalities

(hg1 + g2)2 ≥ c1hg2
1 + 2hg1g2 + c−1

2 hg2
2

= h(g1 + g2)2 + (c1 − 1)hg2
1 + (1− c−1

2 )hg2
2

≥ c1(g2
1 + 2g1g2 + g2

2) + (c1 − 1)c2g2
1 + (c−1

2 − 1)g2
2 .

Next, we integrate this with respect to P , and use the inequality for Pg1g2
on the second term to see that the left side of the lemma is bounded below
by

c1(Pg2
1 − 2

√
cPg2

1Pg
2
2 + Pg2

2) + (c1 − 1)c2Pg2
1 + (c−1

2 − 1)c2Pg2
2 .

Finally, we apply the inequality 2xy ≤ x2 + y2 on the second term. �


Notes. Rates of convergence have been a hot topic in the 1990s. Here
we have only said enough in order to be able to treat the Cox model with
current status censoring in Lecture 9. The papers [5] and [6] are important
contributions and contain good references. Another source of references is the
book [41], which also gives an overview.



9. Lecture:
Maximum and Profile Likelihood

In this lecture we study likelihood methods for semiparametric models. This
concerns both ordinary likelihoods indexed by infinite-dimensional parame-
ters and empirical likelihoods.

9.1 Examples

“Likelihood” is the key unifying element in classical statistics and hence it is
worth while to seek a theory of likelihood for semiparametric models. This
will be the subject of our last two lectures. Unfortunately, what we shall
have to say is not completely satisfying. As known today likelihood theory
for semiparametric models falls short of the beautiful and simple theory for
parametric models.

A first problem is that it is not obvious what we should define to be
the “likelihood” of a given semiparametric model, in general. It is obvious
that the likelihood has something to do with a density of the observations,
viewed as function of the parameter. Apart from the fact that we also need to
choose particular versions of these densities, we encounter the further, major
problem that many semiparametric models are not dominated, or are defined
in terms of densities that maximize to infinity.

The good news is that given a concrete example it is usually not difficult
to choose a “likelihood”, albeit that often other, slightly different choices
would be just as reasonable. Sometimes a likelihood can be taken equal to
a density with respect to a dominating measure, for other models we use an
“empirical likelihood”, but mixtures of these situations occur as well, and
sometimes it is fruitful to incorporate a “penalty” in the likelihood, yielding
a “penalized likelihood estimator”, maximize the likelihood over a set of
parameters that changes with n, yielding a “sieved likelihood estimator”, or
group the data in some way before writing down a likelihood. To bring out this
difference with the “classical”, parametric maximum likelihood estimators,
some authors use the phrase “nonparametric maximum likelihood estimators”
(NPMLE). We prefer to speak simply of “maximum likelihood estimators”,
accepting the risk of being charged that nothing new is happening here. (In
fact, it would be nice if nothing new needed to happen.) After all, in each
of the models we are thinking of there is only one likelihood. We shall not
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give an abstract definition of “likelihood”, but shall describe “likelihoods that
work” for a number of examples to set the stage. We denote the likelihood for
the parameter P given one observation x by lik(P )(x) or lik(θ, η) if P = Pθ,η.

Given a measure P , write P{x} for the measure of the one-point set {x}.
The function x→ P{x} may be considered the density of P , or its absolutely
continuous part, with respect to counting measure. The empirical likelihood
of a sample X1, . . . , Xn is the function,

P →
n∏

i=1

P{Xi}.

Given a model P, a maximum likelihood estimator could be defined as the
distribution P̂ that maximizes the empirical likelihood over P. Such an esti-
mator may or may not exist.

Example 9.1 (Empirical distribution). Let P be the set of all probabil-
ity distributions on the measurable space (X ,A) (in which one-point sets
are measurable). Then, for n fixed different values x1, . . . , xn, the vector(
P{x1}, . . . , P{xn}

)
ranges over all vectors p ≥ 0 such that

∑
pi ≤ 1 when P

ranges over P. To maximize p→
∏
i pi, it is clearly best to choose p maximal:∑

i pi = 1. Then, by symmetry, the maximizer must be p = (1/n, . . . , 1/n).
Thus, the empirical distribution Pn = n−1 ∑ δXi maximizes the empirical
likelihood over the nonparametric model, whence it is referred to as the non-
parametric maximum likelihood estimator.

If there are ties in the observations, this argument must be adapted, but
the result is the same.

The empirical likelihood is appropriate for the nonparametric model. For
instance, in the case of a Euclidean space, even if the model would be re-
stricted to distributions with a continuous Lebesgue density p, then we still
could not use the map p→

∏n
i=1p(Xi) as a likelihood. The supremum of this

“likelihood” is infinite, for we could choose p to have an arbitrarily high, very
thin peak at some observation.

Open Problem 9.2. Suppose we use p →
∏n
i=1p(Xi) as a likelihood, re-

stricted to a Hölder ball of densities p: [0, 1] → R, e.g. all densities which
are twice continuously differentiable with second derivative bounded by
1 and which are themselves bounded by some fixed number. Is it true
that

∫
h(x) p̂(x) dx is an asymptotically efficient estimator for ψ(P ) =∫

h(x) p(x) dx for every reasonable function h?

Example 9.3 (Cox model). We already discussed the problem of finding a
likelihood for the Cox model in Lecture 5. There we settled on using the
function

lik(θ, Λ)(y, δ, x) =
(
eθzΛ{y}e−eθzΛ(y)

)δ(
e−eθzΛ(y)

)1−δ
.
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We also agreed to maximize this over all θ and over all nondecreasing, cadlag
functions Λ with Λ(0) = 0. This is close, but not quite an empirical likelihood.
Furthermore, we have enlarged the parameter set slightly, by not restricting
the jumps of Λ to be at most 1. At the end of this lecture, when discussing
profile likelihood, we reveal the reason for the latter.

Example 9.4 (Mixtures). Mixture models usually are based on well-behaved
parametric families of densities, and then lead to well-behaved likelihoods
equal to the ordinary density. Thus for a given kernel pθ(·| z) and pθ,η the
corresponding mixture density we simply set

lik(θ, η)(x) = pθ,η(x).

Surprisingly little is known about the behaviour of such likelihoods. For ex-
ample, it is known for only a handful of examples that the θ-component of the
maximum likelihood estimator (θ̂, η̂) is asymptotically efficient for estimating
θ, as we would certainly expect.

Open Problem 9.5. Just to show how little is known. Suppose that
X1, . . . , Xn are sampled from a normal location mixture pη(x) =

∫
φ(x−z) dz

and let η̂ be the maximum likelihood estimator for η. Then
∫
z dη̂(z) = Xn

(as can be ascertained by manipulation of likelihood equations) and hence∫
z dη̂(z) is asymptotically efficient for estimating the mean of η, if this exists.

Is the analogous statement true for the higher moments
∫
zk dη̂(z)?

Example 9.6 (Penalized logistic regression). In this model we observe a ran-
dom sample from the distribution of X = (V,W, Y ), for a 0-1 variable Y that
follows the logistic regression model

Pθ,η(Y = 1|V,W ) = Ψ
(
θV + η(W )

)
,

where Ψ(u) = 1/(1 + e−u) is the logistic distribution function. Thus, the
usual linear regression of (V,W ) has been replaced by the partial linear re-
gression θV + η(W ), where η ranges over a large set of “smooth functions”.
For instance, η is restricted to the Sobolev class of functions on [0, 1] whose
(k−1)st derivative exists and is absolutely continuous with J(η) <∞, where

J2(η) =
∫ 1

0

(
η(k)(w)

)2
dw.

Here k ≥ 1 is a fixed integer and η(k) is the kth derivative of η with respect
to z.

The density of an observation is given by

pθ,η(x) = Ψ
(
θv + η(w)

)y(1− Ψ(θv + η(w)
)1−y

fV,W (v, w).

We cannot use this directly for defining a likelihood. The resulting maximizer
η̂ would be such that η̂(wi) = ∞ for every wi with yi = 1 and η̂(wi) = −∞
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when yi = 0, or, at least we could construct a sequence of finite, smooth ηm
approaching this extreme choice. The problem is that qualitative smoothness
assumptions such as J(η) < ∞ do not restrict η on a finite set of points
w1, . . . , wn in any way.

To remedy this situation we could restrict the maximization to a smaller
set of η, which we could allow to grow as n→∞. For instance, the set of all
η such that J(η) ≤ Mn for Mn ↑ ∞ at a slow rate, or a sequence of spline
approximations.

An alternative is to use a penalized likelihood, of the form

(θ, η) → Pn log pθ,η − λ̂2
nJ

2(η).

Here λ̂n is a “smoothing parameter” that determines the importance of the
penalty J2(η). A large value of λ̂n will lead to smooth maximizers η̂, while
for small values the maximizer will be more like the unrestricted maximum
likelihood estimator. Intermediate values are best, and are often chosen by a
data-dependent scheme, such as cross validation.

9.2 Asymptotic Normality

There are two ways of proving of asymptotic normality of the maximum
likelihood estimator in parametric models: one based on maximization and
one based on the likelihood equations. We like the first proof better, but it
appears to be hard to generalize it to general semiparametric models, with
its different types of likelihoods and possibly hard to estimate nuisance pa-
rameters. The proof based on the likelihood equations is easier to adapt to
semiparametric models. If we are interested in the behaviour of the maximum
likelihood estimator for θ in a semiparametric model with parameter (θ, η),
then we have two possibilities. The first is to set up a system of likelihood
equations for both parameters θ and η and infer the joint asymptotic nor-
mality of the maximum likelihood estimators. We shall discuss this method
in the last lecture, Lecture 10.

The second possibility is to treat η as a nuisance parameter in the like-
lihood equation for θ. In fact, if θ̂ would satisfy the efficient score equation
discussed in Lecture 7, then we have already proved its asymptotic normality
and efficiency, under some conditions.

Sometimes the analysis is this easy, but not in general. Perhaps unexpect-
edly, the efficient score function may not be a “proper” score function and
the maximum likelihood estimator may not satisfy the efficient score equa-
tion. This is becasue, by definition, the efficient score function is a projection
(and L2-approximation), and nothing guarantees that this projection is the
derivative of the log likelihood along some submodel. If there exists a “least
favourable” path t→ ηt(θ̂, η̂) such that η0(θ̂, η̂) = η̂, and, for every x,
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�̃θ̂,η̂(x) =
∂

∂t |t=0
log lik

(
θ̂ + t, ηt(θ̂, η̂)

)
(x),

then the maximum likelihood estimator satisfies the efficient score equation; if
not, then this is not clear. The existence of an exact least favourable submodel
appears to be particularly uncertain at the maximum likelihood estimator
(θ̂, η̂), as this tends to be on the “boundary” of the parameter set.

A method around this difficulty is to replace the efficient score equation
by an approximation. First, it suffices that (θ̂, η̂) satisfies the efficient score
equation approximately, for Theorem 7.1 goes through for every consistent
estimator sequence θ̂ such that

√
nPn�̃θ̂,η̂ = oP (1). Second, this theorem is

based on the more general Theorem 6.20, which yields asymptotic normality
of estimators satisfying a more general estimating equation Pnψθ,η̂ ≈ 0, and
actually uses the special property of an efficient score function only to reduce
the asymptotic variance to the inverse efficient influence function. As long
as we can show that the maximum likelihood estimator θ̂ satisfies an equa-
tion Pnψθ̂,η̂ ≈ 0 for functions ψθ,η that, if evaluated at the true parameter
(θ, η), give the efficient score function, then we still can conclude that θ̂ is
asymptotically efficient.

This motivates us to introduce approximately least favourable subpro-
vided models.

Definition 9.7. An approximately least favourable subprovided models is a
collection of maps t → ηt(θ, η) from a neighbourhood of 0 ∈ R

k to the
parameter set for η with η0(θ, η) = η (for every (θ, η)) such that

ψθ,η(x) =
∂

∂t |t=0
log lik

(
θ + t, ηt(θ, η)

)
(x),

exists (for every x) and is equal to the efficient score function at (θ, η) =
(θ0, η0).

Thus, the path t→ ηt(θ, η) must pass through η at t = 0, and at the true
parameter (θ0, η0) the submodel is truly least favourable in that its score is
the efficient score for θ. We need such a submodel for every fixed (θ, η), or at
least for the true value (θ0, η0) and every possible value of (θ̂, η̂).

If (θ̂, η̂) maximizes the likelihood, then the function

t→ Pn log lik
(
θ + t, ηt(θ̂, η̂)

)

is maximal at t = 0 and hence (θ̂, η̂) satisfies the stationary equation
Pnψθ̂,η̂ = 0. Now Theorem 6.20 yields the asymptotic efficiency of θ̂n. The
main assumptions are that the entropies of the classes of realizations of the
functions ψθ̂,η̂ are stable and not too big, and the no-bias and consistency
conditions (6.6) and (6.7).

Two obvious questions arise:
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– Does an approximately least favourable submodel always exist?
– If it exists can it be chosen to satisfy the “regularity” conditions, such as

(6.6)?

We discussed the nature of (6.6) in Lecture 6 and have nothing to add to
it. We do not have a satisfying answer to the first question either. In many
examples such submodels exist, but we have already mentioned some exam-
ples where the question of asymptotic normality of the maximum likelihood
estimator is still open. To give some insight in the difficulties we discuss one
example in some detail below. More in general, we note that we can often
use our insight in the calculus of scores developed in the preceding lectures.
Assume, for instance, that the information operator B∗

0B0, evaluated at the
true parameter (θ0, Λ0) is continuously invertible. Then the efficient score
function is given by

�̃0 = �̇0 −B0(B∗
0B0)−1B∗

0 �̇0.

A score function Bθ,ηh would presumably arise from some path t→ ηt(η)(h)
in the H-space. Then a potential least favourable path is given by

ηt(θ, η) = ηt(η)(−h0), h0 = (B∗
0B0)−1B∗

0 �̇0.

This, of course, is only possible if h0 is a valid direction for perturbation of
η in the H-space. It may be necessary to recenter h0 first, and we may have
to ascertain that h0 is a nice function, e.g. bounded, or continuous, to make
the path well-defined.

Example 9.8 (Cox model). A convenient approximately least favourable sub-
model in the Cox model is defined by

dΛt(θ, Λ) =
(
1− th0

)
dΛ,

where h0 = L1,θ0/L0,θ0 is the least favourable direction in the Λ-space at
the true parameter (θ0, Λ0). (See Example 3.10.) This is a valid cumulative
hazard function, at least for t ≈ 0, if h0 is a bounded function, and this is
true for instance if Z ranges over a bounded interval.

Substituting this submodel in Cox likelihood and differentiating with re-
spect to t gives

ψθ,Λ(x) =
∂

∂t t=0
lik
(
θ + t, Λt(θ, λ)

)
(x) = �̇θ,Λ −Bθ,Λh0(x).

This is not the efficient score function at every choice (θ, Λ), but it is the
efficient score function for (θ, Λ) = (θ0, Λ0), which is enough. The regularity
conditions of Theorem 6.20 can be verified. Let us restrict ourselves to the
most interesting one, the no-bias condition (6.8). We have

Pθ0,Λ0ψθ0,Λ̂ = Pθ0,Λ0(�̇θ0,Λ̂ −Bθ0,Λ̂h0)
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= Pθ0,Λ0

[
(�̇θ0,Λ̂ −Bθ0,Λ̂h0)− (�̇θ0,Λ0 −Bθ0,Λ0h0)

]

= −Pθ0,Λ0

[
zeθ0z(Λ̂− Λ0)(y)− eθ0z

∫

[0,y]
h0 d(Λ̂− Λ0)

]

= −
∫

(L1,θ0 − L0,θ0h0) d(Λ̂− Λ0).

The right side vanishes by the definition of the least favourable direction
h0. Therefore, the “no bias” condition is satisfied in the strongest possible
sense. (We could have inferred this immediately from the linearity of the
score functions in Λ (even though the likelihood is not linear in Λ)). Again,
the Cox model is as nice as it can be; in other cases we do find a remainder
term, and need to establish some rate of convergence.

9.3 Cox Regression with Current Status Data

We take up the example for which we computed rates of convergence in
Lecture 8. Thus we observe a random sample from the density

pθ,Λ(x) =
(
1− exp(−eθT zΛ(c))

)δ( exp(−eθT zΛ(c))
)1−δ

.

We define this density as the likelihood for one observation x = (c, δ, z). We
make the same assumptions as in Lecture 8, but add the assumption that
the function hθ0,Λ0 given by (9.1) ahead has a version which is differentiable
with a bounded derivative on [σ, τ ].

The score function for θ takes the form

�̇θ,Λ(x) = zΛ(c)Qθ,Λ(x),

for the function Qθ,Λ given by

Qθ,Λ(x) = eθ
T z
[
δ

e−eθT zΛ(c)

1− e−eθT zΛ(c)
− (1− δ)

]
.

For every nondecreasing, nonnegative function h and positive number t, the
submodel Λt = Λ+ th is well defined. Inserting this in the log likelihood and
differentiating with respect to t at t = 0, we obtain a score function for Λ of
the form

Bθ,Λh(x) = h(c)Qθ,Λ(x).

The linear span of these score functions contains Bθ,Λh for all bounded func-
tions h of bounded variation. In view of the similar structure of the scores
for θ and Λ, projecting �̇θ,Λ onto the closed linear span of the nuisance scores
is a weighted least squares problem with weight function Qθ,Λ. The solution
is given by the vector-valued function
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hθ,Λ(c) = Λ(c)
Eθ,Λ

(
ZQ2

θ,Λ(X)|C = c
)

Eθ,Λ
(
Q2
θ,Λ(X)|C = c

) . (9.1)

The efficient score function for θ takes the form

�̃θ,Λ(x) =
(
zΛ(c)− hθ,Λ(c)

)
Qθ,Λ(x).

Formally, this function is the derivative at t = 0 of the log likelihood eval-
uated at (θ + t, Λ − tThθ,Λ). However, the second coordinate of the latter
path may not define a nondecreasing, nonnegative function for every t in a
neighbourhood of 0 and hence cannot be used to obtain a stationary equation
for the maximum likelihood estimator. This is true in particular, for discrete
cumulative hazard functions Λ, for which Λ + th is nondecreasing for both
t < 0 and t > 0 only if h vanishes between the jumps of Λ.

This suggests that the maximum likelihood estimator does not satisfy the
efficient score equation. To prove the asymptotic normality of θ̂, we replace
this equation by an approximation, obtained from an approximately least
favourable submodel.

Our second guess on a least favourable submodel is to use Λt(θ, Λ) =
Λ− thθ0,Λ0 ◦ Λ−1

0 ◦ Λ. This alleviates the problem of different supports of Λ
and its perturbation. Indeed, if the function hθ0,Λ0 ◦ Λ−1

0 is Lipschitz, then
for any a ≤ b and C the Lipschitz constant,

Λt(θ, Λ)(a)− Λt(θ, Λ)(b) ≤
(
Λ(a)− Λ(b)

)
(1− tC).

Hence the function Λt(θ, Λ) is nondecreasing for sufficiently small |t|.
However, it is not clear that the range of Λt(θ, Λ) is inside [0,M ], whereas

we have decided to maximize only over functions with range inside this in-
terval. (It would have been better at this point to drop that restriction,
to maximize over all nondecreasing functions, and next to prove that the
maximizers remain uniformly bounded with high probability. However, we
imposed the restriction to [0,M ] precisely, because we do not know if the last
is true. Now we have to pay for it.) This motivates a third guess of a least
favourable submodel. We take it to be, with φ a suitably chosen function,

Λt(θ, Λ) = Λ− tφ ◦ Λhθ0,Λ0 ◦ Λ−1
0 ◦ Λ.

If φ is Lipschitz, then Λt(θ, Λ) is nondecreasing, by the same argument as
before. If y− tφ(y)hθ0,Λ0 ◦Λ−1

0 (y) is contained in [0,M ] for all y in the range
of Λ, then Λt(θ, Λ) takes its values in [0,M ]. We achieve this if 0 ≤ φ(y) ≤
c
(
y ∧ (M − y)

)
for every 0 ≤ y ≤ M , Under our assumptions we can choose

φ in such a way that this holds and, moreover, φ is the identity on the range
[Λ0(s), Λ(τ)] of Λ0 (which is strictly contained in [0,M ]).

Inserting
(
θ+ t, Λt(θ, Λ)

)
into the log likelihood, and differentiating with

respect to t at t = 0, yields the score function

ψθ,Λ(x) =
(
zΛ(c)− φ

(
Λ(c)

)
(hθ0,Λ0 ◦ Λ−1

0 )
(
Λ(c)

))
Qθ,Λ(x).
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When evaluated at (θ0, Λ0) this reduces to the efficient score function
�̃θ0,Λ0(x) provided φ(Λ0) = 1, whence the submodel is approximately least
favourable. To prove the asymptotic efficiency of θ̂n it suffices to verify the
conditions of Theorem 6.20.

To verify the no-bias condition (6.8) we can use the decomposition (6.5)
in combination with the inequalities

|pθ0,Λ − pθ0,Λ0 |(x) � |Λ− Λ0|(c),
∣
∣ψθ0,Λ − ψθ0,Λ0 |(x) � |Λ− Λ0|(c),

∣
∣pθ0,Λ − pθ0,Λ0 −Bθ0,Λ0(Λ− Λ0)pθ0,Λ0

∣
∣(x) � |Λ− Λ0|2(c).

For every fixed x, the expressions on the left depend on Λ only through the
scalar Λ(y). For this reason these inequalities follow from ordinary Taylor
expansions and uniform bounds on the first and second derivatives. By writing
the bias as in (6.5), we now easily obtain that

|Pθ0,Λ0ψθ0,Λ̂| �
∫ τ

σ

|Λ̂− Λ0|2(c) dc.

The right side was shown to be of the order OP (n−2/3) in Lecture 8, and this
is better than the oP (n−1/2) that is needed for asymptotic efficiency of θ̂.

The functions ψθ,Λ can be written in the form

ψθ,Λ(x) = ψ(z, eθ
T z, Λ(c), δ),

for a function ψ that is Lipschitz in its first three coordinates, for δ ∈ {0, 1}
fixed. (Note that Λ → ΛQθ,Λ is Lipschitz, as Λ → hθ0,Λ0 ◦ Λ−1

0 (Λ)/Λ =
(hθ0,Λ0/Λ0) ◦ Λ−1

0 (Λ).) The functions z → z, z → exp θT z, c → Λ(c) and
δ → δ form Donsker classes when θ and Λ range freely. Hence the functions
x→ Λ(c)Qθ,Λ(x) form a Donsker class, by Theorem 6.10.

Open Problem 9.9. Find the limit distribution (if any) of the sequence
n1/3(Λ̂− Λ)(t).

9.4 Profile Likelihood

Given a partitioned parameter (θ, η) and a likelihood lik(θ, η)(x) the profile
likelihood for θ is defined as the function

θ → proflik(θ): = sup
η

n∏

i=1

lik(θ, η)(Xi).

The supremum is taken over all possible values of η, or given a sieve all values
in the sieve at “time” n. It is rarely possible to compute a profile likelihood
explicitly, but its numerical evaluation is often feasible.
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The profile likelihood can be used as a computational device, because its
point of maximum is exactly the first coordinate of the maximum likelihood
estimator (θ̂, η̂). We are simply computing the maximum of the likelihood
over (θ, η) in two steps.

However, the importance of the profile likelihood goes far beyond com-
putational issues. Profile likelihood functions can be used in the same way
as (ordinary) likelihood functions of parametric models. Besides defining the
maximum likelihood estimator θ̂, the curvature of the log profile likelihood
at θ̂ can be used as an estimate of minus the inverse of the asymptotic covari-
ance matrix of θ̂. Furthermore, the quotient proflik(θ̂)/proflik(θ0) between
the maximum value and the value at a fixed point θ0 is the likelihood ratio
statistic for testing the (composite) null hypothesis H0: θ = θ0. In this section
we study these quantities more closely.

It is well known that for parametric models with log likelihood �θ(x) =
log lik(θ) the likelihood ratio statistic 2nPn(�θ̂ − �θ0) is under some assump-
tions and under the null hypothesis H0: θ = θ0 asymptotically chisquared
distributed with degrees of freedom equal to the dimension of the param-
eter. Furthermore, it is well known that the observed information −Pn�̈θ̂
is, under some conditions, a consistent estimator of the Fisher information
Iθ = Pθ �̇θ �̇

T
θ = −Pθ �̈θ. Under some (more) conditions we can prove analogous

results for semiparametric models, but with the profile likelihood function for
θ replacing the ordinary likelihood.

At the basis of these results is an asymptotic expansion of the (profile)
likelihood function as follows. For any random sequence θ̃n P→ θ0,

log proflikn(θ̃n) = log proflikn(θ0) + (θ̃n − θ0)T
n∑

i=1

�̃θ0,η0(Xi)

− 1
2n(θ̃n − θ0)T Ĩθ0,η0(θ̃n − θ0) + oPθ0,η0

(√
n‖θ̃n − θ0‖+ 1

)2
. (9.2)

If the maximum likelihood estimator is asymptotically efficient, then it pos-
sesses the asymptotic expansion

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

Ĩ−1
θ0,η0

�̃θ0,η0(Xi) + oPθ0,η0
(1). (9.3)

Taking this into account we see that the parabolic approximation to the log
profile likelihood given by equation (9.2) is centered, to the first order, at
θ̂n. In other words, it is possible to expand the log profile likelihood function
around θ̂n, in the form

log proflikn(θ̃n) = log proflikn(θ̂n)− 1
2n(θ̃n − θ̂n)T Ĩθ0,η0(θ̃n − θ̂n)

+ oPθ0,η0

(√
n‖θ̃n − θ0‖+ 1

)2
.

(9.4)

Actually (9.3)–(9.4) are a consequence of (9.2), as we prove below. The ex-
pansion (9.2) is firmly believed to be true in some generality. We shall not
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give precise conditions for its validity here, but note that such conditions
have been given in terms of the existence of approximately least favourable
paths, much in the spirit of our treatment of maximum likelihood estimators
earlier in this lecture.

The asymptotic expansions (9.2) and (9.4) justify using a semiparametric
profile likelihood as an ordinary likelihood, at least asymptotically. In partic-
ular, we present three corollaries. We assume that the true parameter θ0 is
interior to the parameter set.

Corollary 9.10. If (9.2) holds, Ĩθ0,η0 is invertible, and θ̂n is consistent,
then (9.3)–(9.4) hold. In particular, the maximum likelihood estimator θ̂ is
asymptotically efficient at (θ0, η0).

Corollary 9.11. If (9.2) holds, Ĩθ0,η0 is invertible, and θ̂n is consistent, then
under the null hypothesis H0: θ = θ0, then the sequence 2 log

(
proflikn(θ̂n)/

proflikn(θ0)
)

is asymptotically chi-squared distributed with d degrees of free-
dom.

Corollary 9.12. If (9.2) holds and θ̂n is consistent, then, for all sequences
vn

P→ v ∈ R
d and hn P→ 0 such that (

√
nhn)−1 = OP (1),

−2
log proflikn(θ̂n + hnvn)− log proflikn(θ̂n)

nh2
n

P→ vT Ĩ0v.

Proofs. The second and third corollaries are immediate consequences of
(9.2)–(9.4). Relation (9.4) follows from (9.2)–(9.3) and some algebra. We shall
derive (9.3) from (9.2). Set ∆n = n−1/2∑n

i=1�̃θ0,η0(Xi) and ĥ =
√
n(θ̂ − θ0).

Applying (9.2) with the choices θ̃ = θ̂ and θ̃ = θ0 + n−1/2Ĩ−1
θ0,η0

∆n, we
find

log proflikn(θ̂)

= log proflikn(θ0) + ĥT∆n − 1
2 ĥ

T Ĩθ0,η0 ĥ+ oP
(
‖ĥ‖+ 1

)2
,

log proflikn(θ0 + n−1/2Ĩ−1
θ0,η0

∆n)

= log proflikn(θ0) +∆T
n Ĩ

−1
θ0,η0

∆n − 1
2∆

T
n Ĩ

−1
θ0,η0

∆n + oP (1).

By the definition of θ̂, the expression on the left (and hence on the right)
in the first equation is larger than the expression on the left in the second
equation. It follows that

ĥT∆n − 1
2 ĥ

T Ĩθ0,η0 ĥ− 1
2∆

T
n Ĩ

−1
θ0,η0

∆n ≥ −oP
(
‖ĥ‖+ 1

)2
.

The left side of this inequality is equal to

− 1
2 (ĥ− Ĩ−1

θ0,η0
∆n)T Ĩ0(ĥ− Ĩ−1

θ0,η0
∆n) ≤ −c‖ĥ− Ĩ−1

θ0,η0
∆n‖2,
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for a positive constant c, by the nonsingularity of Ĩθ0,η0 . Conclude that

‖ĥ− Ĩ−1
θ0,η0

∆n‖ = oP
(
‖ĥ‖+ 1

)
.

This implies first that ‖ĥ‖ = OP (1), and next, by reinsertion, that ‖ĥ −
Ĩ−1
θ0,η0

∆n‖ = oP (1). This completes the proof of (9.3). �


Example 9.13 (Cox model). Consider again the Cox model of Example 3.10.
In Lecture 5 we noted that the second component of the maximum likelihood
estimator (θ̂, Λ̂), relative to the likelihood chosen there, will be a step function
with steps only at the Yi such that∆i = 0. It follows that the profile likelihood
function takes the form

θ → sup
λ1,...,λn≥0

n∏

i=1

(
eθZiλi

)∆i

e
−eθZi

∑
j:Yj≤Yi

λj∆j .

In this (very special) case the supremum can be explicitly computed. Finding
the maximizers over (λ1, . . . , λn) is equivalent to maximizing

n∑

i=1

∆i log λi −
n∑

i=1

∑

j:Yj≤Yi

eθZiλj∆j .

Interchanging the sums and next taking the partial derivative relative to λk
for a k such that ∆k = 1, yields the stationary equation

1
λk

=
∑

i:Yi≥Yk

eθZi .

Upon inserting this in the likelihood we find the profile likelihood for θ

θ →
n∏

i=1

( eθZi

∑
j:Yj≥Yi

eθZj

)∆i

e−
∑n

i=1∆i .

This expression is known as the Cox partial likelihood. Cox’s original moti-
vation for this criterion function is that the terms in the product are the
conditional probabilities that the ith subject dies at time Yi given that one
of the subjects at risk dies at that time.

The Cox partial log likelihood is a sum over the observations, but the
terms in the sum are dependent. Direct study of such a sum therefore is non-
trivial at first sight. Initially the Cox partial likelihood estimator was studied
along the classical lines: characterizing θ̂ as the solution of the derivative of
the partial likelihood and next using Taylor series arguments on this partial
score equation. The difficulty is then to show that the partial score and its
derivative are asymptotically normal or satisfy a law of large numbers. Later
it turned out that martingale arguments can both justify this derivation and
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facilitate the calculation of means and variances. Elegant as this arguments
are, they are restricted to a special case such as the Cox model. In the final
lecture we shall show how the asymptotic normality of the Cox estimators
can be derived within a framework that applies to general semiparametric
models. Alternatively, the asymptotic normality of θ̂ follows along the lines
of the present lecture.

Notes. The treatment of the Cox model with current status data follows
[12], who also presents a general set-up. Our definition of approximately least
favourable submodels is based on [40] and [26]. The latter paper discusses
the profile likelihood function and summarizes other work on the likelihood
ratio statistic and the observed information. For an analysis of the sieved or
penalized logistic regression model see [13] and [21].



10. Lecture:
Infinite-dimensional Z-Estimators

In this lecture we consider infinite-dimensional systems of estimating equa-
tions and show that solutions are asymptotically normal if the system is
appropriately differentiable, extending the results on finite-dimensional Z-
estimators to infinite dimensions. Next we show that this method can be
applied to proving asymptotic normality of maximum likelihood estimators
in semiparametric models, with as example, again, the Cox model.

10.1 General Result

A system of estimating equations for a parameter must be of the same di-
mension as the parameter. For an infinite-dimensional parameter we need
infinitely many estimating equations. It turns out that such a system can be
analyzed much in the same way as a finite-dimensional system, provided that
we substitute functional analysis for multivariate calculus. The system is lin-
earized in the estimators by a Taylor expansion around the true parameter,
and the limit distribution involves the inverse of the derivative applied to the
system of equations. Whereas in the finite-dimensional situation the use of
empirical processes can be avoided through higher order Taylor expansions,
now empirical processes appear indispensable. But we do not mind that, of
course, having established already all the tools we need.

For each θ in a subset Θ of a Banach space and each h in an arbitrary set
H, let ψθ,h:X → R be a measurable function. Denote by ψθ(x) the vector-
valued function {ψθ,h(x):h ∈ H} and let Pnψθ and Pψθ be the corresponding
vector-valued empirical and “true” means. We are interested in zeros θ̂ of the
map θ → Pnψθ. Equivalently, in random elements θ̂ with values in Θ such
that

Pnψθ,h = 0, every h ∈ H.

We expect that the sequence θ̂n converges in probability to a zero of the
map θ → Pψθ. In applications where θ̂ is a maximum likelihood or another
contrast estimator, we usually already know this from applying a standard
method to the contrast function. It may also be possible to establish con-
sistency from the fact that θ̂ is a zero only. In any case, the consistency
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issue does not yield structurally different questions from before and we omit
further discussion.

We assume that the maps h → ψθ(x) and h → Pψθ,h are uniformly
bounded, so that the maps θ → Pnψθ and θ → Pψθ map Θ into �∞(H). This
may seem a bit special, but even when considering maps θ → ψθ(x) with
values in a general Banach space, we can always force this in the present
form by choosing the right index set H. The advantage of the present special
form is that we set the theorems immediately within the context of empirical
processes.

The following theorem establishes the asymptotic normality of
√
n(θ̂− θ)

and should be compared to Theorem 6.17. Recall that Fréchet differentiability
is ordinary differentiability. Thus the map θ → Pψθ is Fréchet differentiable
at θ0 if there exists a continuous, linear map V : lin Θ → �∞(H) such that, as
θ → θ0, ∥

∥Pψθ − Pψθ0 − V (θ − θ0)
∥
∥

H = o
(
‖θ − θ0‖

)
.

In our setting we do not assume that the domain of the map θ → Pψθ
contains θ0 as an interior point, but allow Θ to be arbitrary. The sequence
θ → θ0 in the preceding display is restricted to Θ.

Theorem 10.1. Suppose that the class of functions {ψθ,h: θ ∈ Θ, h ∈ H}
is P -Donsker, that the map θ → Pψθ is Fréchet differentiable at θ0 with
derivative V : lin Θ → �∞(H) that is one-to-one and has a continuous inverse
V −1: R(V ) → lin Θ. Furthermore, assume that the maps θ → ψθ,h are con-
tinuous in L2(P ) at θ0, uniformly in h ∈ H. Then any zero θ̂n of θ → Pnψθ
that converges in probability to a zero θ0 of θ → Pψθ satisfies

V
√
n(θ̂ − θ0) = Gnψθ0 + oP (1).

Proof. The first step is to prove that Gn(ψθ̂n
− ψθ0) P→ 0 in �∞(H). Equip

the set H×Θ with the semi-metric

ρ
(
(h, θ), (h′, θ′)

)
=
√
P (ψθ,h − ψθ′,h′)2,

and define a map φ: �∞(H×Θ)×Θ → �∞(H) by φ(z, θ) = z(·, θ)−z(·, θ0). By
assumption we have that ρ

(
(h, θ), (h, θ0)

)
→ 0, uniformly in h ∈ H, as θ → θ0.

Thus if z ∈ �∞(H×Θ) is ρ-uniformly continuous, then |z(h, θ)−z(h, θ0)| → 0,
uniformly in h ∈ H, if θ → θ0. Consequently, for such z and for (zn, θn) →
(z, θ0) an arbitrary sequence in �∞(H×Θ)×Θ,

∥
∥φ(zn, θn)− φ(z, θ0)

∥
∥

H =
∥
∥zn(h, θn)− zn(h, θ0)‖H

≤ 2‖zn − z‖H×Θ +
∥
∥z(h, θn)− z(h, θ0)

∥
∥

H → 0.

We conclude that the map φ is continuous at every point (z, θ0) such z is
ρ-uniformly continuous at θ0. Almost all sample paths of a Brownian bridge
are uniformly continuous relative to the L2(P )-norm and therefore almost all
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sample paths (θ, h) → Z(θ, h) of the process Z(θ, η) = Gψθ,h are uniformly
continuous relative to ρ. By assumption we have that Zn � Z and that
θ̂n

P→ θ0. Hence (Zn, θ̂n) � (Z, θ0) and by the continuous mapping theorem
we conclude that φ(Zn, θ̂n) � φ(Z, θ0) = 0. This is equivalent to the claim
that Gn(ψθ̂n

− ψθ0) P→ 0 in �∞(H).
Using the fact that θ̂ and θ0 are zeros we can rewrite the claim as

−
√
nP (ψθ̂n

− ψθ0) = Gnψθ0 + oP (1).

The right side converges in distribution in �∞(H), by the Donsker assumption.
Hence its norm is OP (1). The left side can be written as

−
√
n
(
V (θ̂n − θ0) + oP (‖θ̂n − θ0‖)

)

by the assumption of Fréchet differentiability. Because V has a continuous
inverse on its range, there exists a constant c > 0 such that ‖V (θ − θ0)‖ ≥
c‖θ−θ0‖ for every θ ∈ Θ. We use this and the preceding displays to conclude
that

√
n‖θ̂n − θ0‖ = OP (1). Next we insert this in the preceding display to

see that the display is equivalent to −V√n(θ̂n − θ0) + oP (1). �


We can invert the assertion of the preceding theorem to see that
√
n(θ̂n−

θ0) is asymptotically distributed as V −1
Gψθ0 provided we use the correct

(continuous) extension of the inverse operator V −1 to a domain that con-
tains the support of the Brownian bridge Gψθ0 . Because continuous, linear
transformations of Gaussian processes are Gaussian we obtain that the se-
quence

√
n(θ̂n−θ0) is asymptotically normal. In many situations, though, the

limit distribution is easier found by performing the inversion of the relation
for a finite n. We shall see an example of this in the following treatment of
maximum likelihood estimators.

An important condition in the theorem is the continuous invertibility of
the derivative V . Since a linear map between Euclidean spaces is automat-
ically continuous, in the finite-dimensional set-up this condition reduces to
the derivative being one-to-one. For infinite-dimensional systems of estimat-
ing equations, the continuity is far from automatic and may be the condition
that is hardest to verify. Since it refers to the �∞(H)-norm, we have some con-
trol over it while setting up the system of estimating equations and choosing
the set of functions H. A bigger set H makes V −1 more readily continu-
ous, but makes the differentiability of the map θ → Pψθ and the Donsker
condition more stringent.

10.2 Maximum Likelihood

Consider a semiparametric model, indexed by a finite-dimensional parame-
ter θ of interest and a nuisance parameter η, assumed to be contained in
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some Banach space. We wish to apply the preceding theorem to derive the
asymptotic distribution of the pair (θ̂, η̂) of maximum likelihood estimators.
(Thus θ of the theorem becomes (θ, η) in this section.) This approach gives
an alternative to the one of Lecture 9 based on the efficient score equation. A
limitation of the present approach is that both θ̂ and η̂ must converge at

√
n-

rate. It is not clear that a model can always appropriately be parametrized
such that this is the case, while it is certainly not always the case for the nat-
ural parametrization. An advantage is that we obtain the joint asymptotic
distribution of θ̂ and η̂.

The system of estimating equations that we are looking for will consist
of stationary equations resulting from varying either the parameter θ or the
nuisance parameter η. Suppose that our maximum likelihood estimator (θ̂, η̂)
maximizes the function

(θ, η) →
∏

lik(θ, η)(Xi),

for lik(θ, η)(x) being the “likelihood” given one observation x.
The parameter θ can be varied in the usual way, and the resulting sta-

tionary equation takes the form

Pn�̇θ̂,η̂ = 0.

This is the usual maximum likelihood equation, except that we evaluate the
score function at the joint estimator (θ̂, η̂), rather than at the single value θ̂.
A precise condition for this equation to be valid is that the partial derivative
of log lik(θ, η)(x) with respect to θ exists and is equal to �̇θ,η(x), for every x,
(at least for η = η̂ and at θ = θ̂).

Varying the nuisance parameter η is conceptually more difficult. Typi-
cally, we can use a selection of the submodels t → ηt used for defining the
tangent set and the information in the model. If scores for η take the form
of an “operator” Bθ,η working on a set of indices h, then a typical likelihood
equation will take the form

PnBθ̂,η̂h = Pθ̂,η̂Bθ̂,η̂h.

Here we have made it explicit in our notation that a score function always
has mean zero, by writing the score function as x → Bθ,ηh(x) − Pθ,ηBθ,ηh
rather than as x→ Bθ,ηh(x). The preceding display will be valid if, for every
(θ, η), there exists some path t → ηt(θ, η) such that η0(θ, η) = η and, for
every x,

Bθ,ηh(x)− Pθ,ηBθ,ηh =
∂

∂t |t=0
log lik

(
θ + t, ηt(θ, η)

)
.

Assume that this is the case for every h in some index set H, and suppose
that the latter is chosen in such a way that the map h→ Bθ,ηh(x)−Pθ,ηBθ,ηh
is uniformly bounded on H, for every x and every (θ, η).



450 10 Lecture: Infinite-dimensional Z-Estimators

Our total set of estimating equations may be thought of as indexed by the
set {1, . . . , k} ∪H. We can summarize the estimating equations in a random
map Ψn: Rk ×H → R

k × �∞(H) given by Ψn = (Ψn1, Ψn2) with

Ψn1(θ, η) = Pn�̇θ,η,

Ψn2(θ, η)h = PnBθ,ηh− Pθ,ηBθ,ηh, h ∈ H.

The expectation of these maps under the parameter (θ0, η0) is the determin-
istic map Ψ = (Ψ1, Ψ2) given by

Ψ1(θ, η) = Pθ0,η0 �̇θ,η,

Ψ2(θ, η)h = Pθ0,η0Bθ,ηh− Pθ,ηBθ,ηh, h ∈ H.

By construction, the maximum likelihood estimators (θ̂n, η̂n) and the “true”
parameter (θ0, η0) are zeros of these maps,

Ψn(θ̂n, η̂n) = 0 = Ψ(θ0, η0).

Under some conditions, Theorem 10.1 gives the asymptotic distribution of
the sequence

√
n(θ̂ − θ0, η̂ − η0) as a function of the derivative Ψ̇0 of Ψ at

(θ0, η0) and the limit process of
√
n(Ψn − Ψ)(θ0, η0), a pair of a Gaussian

vector and a Brownian bridge process.
We would like to make this limit process more concrete and ascertain

that the maximum likelihood estimator is asymptotically efficient. Then we
need to relate the derivative of Ψ to the score and information operators
of the model. Consider the case that η is a measure on a measurable space
(Z, C). Then the directions h can often be taken equal to bounded functions
h:Z → R, corresponding to the paths dηt = (1 + th) dη if η is a completely
unknown measure, or dηt =

(
1 + t(h− ηh)

)
dη if the total mass of each η is

fixed to one. In the remainder of the discussion, we assume the second. Now
the derivative map Ψ̇0 typically takes the form

(θ − θ0, η − η0) →
(
Ψ̇11 Ψ̇12

Ψ̇21 Ψ̇22

) (
θ − θ0
η − η0

)

,

where
Ψ̇11(θ − θ0) = −Pθ0,η0 �̇θ0,η0 �̇Tθ0,η0(θ − θ0),

Ψ̇12(η − η0) = −
∫
B∗
θ0,η0 �̇θ0,η0 d(η − η0),

Ψ̇21(θ − θ0)h = −Pθ0,η0(Bθ0,η0h)�̇Tθ0,η0 (θ − θ0),

Ψ̇22(η − η0)h = −
∫
B∗
θ0,η0Bθ0,η0h d(η − η0).

(10.1)

For instance, to find the last identity in an informal manner, consider a path
ηt in the direction of g, so that dηt−dη0 = tg dη0+o(t). Then by the definition
of a derivative
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Ψ2(θ0, ηt)− Ψ2(θ0, η0) ≈ Ψ̇22
(
ηt − η0

)
+ o(t).

On the other hand, by the definition of Ψ , for every h,

Ψ2(θ0, ηt)h− Ψ2(θ0, η0)h = −(Pθ0,ηt
− Pθ0,η0)Bθ0,ηt

h

≈ −tPθ0,η0(Bθ0,η0g)(Bθ0,η0h) + o(t)

= −
∫

(B∗
θ0,η0Bθ0,η0h) tg dη0 + o(t)

≈ −
∫

(B∗
θ0,η0Bθ0,η0h) d(ηt − η0) + o(t).

On comparing the preceding pair of displays, we obtain the last line of (10.1).
These arguments are purely heuristic, and this form of the derivative must
be established for every example. For instance, within the context of Theo-
rem 10.1, we may need to apply Ψ̇0 to η that are not absolutely continuous
with respect to η0. Then the validity of (10.1) already depends on the version
that is used to define the adjoint operator B∗

θ0,η0
. By definition, an adjoint

is an operator between L2-spaces and hence maps equivalence classes into
equivalence classes.

The continuous invertibility of Ψ̇0 can be verified by ascertaining the con-
tinuous invertibility of the two operators Ψ̇11 and V̇ = Ψ̇22 − Ψ̇21Ψ̇

−1
11 Ψ̇12. In

that case we have

Ψ̇−1
0 =

(
Ψ̇−1

11 + Ψ̇−1
11 Ψ̇12V̇

−1Ψ̇21Ψ̇
−1
11 −Ψ̇−1

11 Ψ12V̇
−1

−V̇ −1Ψ̇21Ψ̇
−1
11 V̇ −1

)

.

The operator Ψ̇11 is the Fisher information matrix for θ when η is known. If
this would not be invertible, then there would be no hope of finding asymp-
totically normal estimators for θ. The operator V̇ has the form

V̇ (η − η0)h = −
∫

(B∗
θ0,η0Bθ0,η0 +K)h d(η − η0),

where the operator K is defined as

Kh = −
(
Pθ0,η0(Bθ0,η0h)�̇

T
θ0,η0

)
I−1
θ0,η0

B∗
θ0,η0 �̇θ0,η0 .

The operator V̇ : lin H → �∞(H) is certainly continuously invertible if there
exists a positive number ε such that, for all η ∈ lin H

sup
h∈H

∣
∣V̇ (η − η0)h

∣
∣ ≥ ε‖η − η0‖.

In the case that η is identified with the map h→ ηh in �∞(H), the norm on
the right is given by suph∈H

∣
∣(η−η0)h

∣
∣. Then the display is certainly satisfied

if, for some ε > 0,
{

(B∗
θ0,η0Bθ0,η0 +K)h:h ∈ H

}
⊃ εH.
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This condition has a nice interpretation if H is equal to the unit ball of a
Banach space D of functions. Then the preceding display is implied by the
operator B∗

θ0,η0
Bθ0,η0 + K: D → D being continuously invertible. The first

part of this operator is the information operator for the nuisance parameter.
Typically, this would be continuously invertible if the nuisance parameter
is regularly estimable at a

√
n-rate (relatively to the norm used) when θ

is known. The following lemma guarantees that the same is then true for
the operator B∗

θ0,η0
Bθ0,η0 + K if the efficient information matrix for θ is

nonsingular, i.e. the parameters θ and η are not locally confounded.

Lemma 10.2. Let H be the unit ball in a Banach space D contained in
�∞(Z). If Ĩθ0,η0 is nonsingular, B∗

θ0,η0
Bθ0,η0 : D → D is continuous, onto and

continuously invertible and B∗
θ0,η0

�̇θ0,η0 ∈ D, then B∗
θ0,η0

Bθ0,η0 + K: D → D

is continuous, onto and continuously invertible.

Proof. Abbreviate the index (θ0, η0) to 0. The operator K is compact, be-
cause it has a finite-dimensional range. Therefore, by Lemma 10.3 below, the
operator B∗

0B0 +K is continuously invertible provided that it is one-to-one.
Suppose that (B∗

0B0 + K)h = 0 for some h ∈ D. By definition Kh =
aT0 B

∗
o �̇0 for for a0 = −I−1

0 P0(B0h)�̇0. By assumption there exists a path
t→ ηt with score function B0h = B0h−P0B0h at t = 0. Then the submodel
indexed by t → (θ0 + ta0, ηt) has score function aT0 �̇0 + B0h at t = 0, and
information

aT0 I0a0 + P0(B0h)2 + 2aT0 P0�̇0(B0h) = P0(B0h)2 + aT0 I0a0.

Since the efficient information matrix is nonsingular, this information must
be strictly positive, unless a0 = 0. On the other hand,

0 = η0h(B∗
0B0 +K)h = P0(B0h)2 − aT0 P0(B0h)�̇0.

This expression is at least the right side of the preceding display and would
be positive if a0 �= 0. Thus a0 = 0, whence Kh = 0. Reinserting this in the
equation (B∗

0B0 +K)h = 0, we find that B∗
0B0h = 0 and hence h = 0. �


The proof of the preceding lemma is based on the Fredholm theory of
linear operators. An operator K: D → D is compact if it maps the unit ball
into a totally bounded set. The following lemma shows that for certain op-
erators continuous invertibility is a consequence of their being one-to-one, as
is true for matrix operators on Euclidean space. It is also useful to prove the
invertibility of the information operator itself.

Lemma 10.3. Let D be a Banach space, let the operator A: D → D be con-
tinuous, onto and continuously invertible and let K: D → D be a compact
operator. Then R(A+K) is closed and has codimension equal to the dimen-
sion of N(A+K). In particular, if A+K is one-to-one, then A+K is onto
and continuously invertible.
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The asymptotic covariance matrix of the sequence
√
n(θ̂n − θ0) can be

computed from the expression for Ψ̇0 and the covariance function of the lim-
iting process of the sequence

√
nΨn(θ0, η0). However, it is easier to use an

asymptotic representation of
√
n(θ̂n − θ0) as a sum. For a continuously in-

vertible information operator B∗
θ0,η0

Bθ0,η0 this can be obtained as follows.
In view of (10.1), the assertion of Theorem 10.1 can be rewritten as the

system of equations, with a subscript 0 denoting (θ0, η0),

−I0(θ̂n − θ0)− (η̂n − η0)B∗
0 �̇0 = −(Pn − P0)�̇0 + oP (1/

√
n),

−P0(B0h)�̇T0 (θ̂n − θ0)− (η̂n − η0)B∗
0B0h = −(Pn − P0)B0h+ oP (1/

√
n).

The oP (1/
√
n)-term in the second line is valid for every h ∈ H (uniformly in

h). If we can also choose h = (B∗
0B0)−1B∗

0 �̇0, and subtract the first equation
from the second, then we arrive at

Ĩθ0,η0
√
n(θ̂n − θ0) =

√
n(Pn − P0)�̃θ0,η0 + oP (1).

Here �̃θ0,η0 is the efficient score function for θ, as given by Eq. (3.3), and
Ĩθ0,η0 is the efficient information matrix. The representation shows that the
sequence

√
n(θ̂n−θ0) is asymptotically linear in the efficient influence function

for estimating θ. Hence the maximum likelihood estimator θ̂ is asymptotically
efficient.

Example 10.4 (Cox model). We come back to the Cox model one more time.
We recall that the scores and the information operator are given by

�̇θ,Λ(x) = δz − zeθzΛ(y)

Bθ,Λh(x) = δh(y)− eθz
∫

[0,y]
h dΛ

B∗
θ,ΛBθ,Λh(y) = h(y) Eθ,Λ1Y≥ye

θZ

B∗
θ,Λ�̇θ,Λ = Eθ,Λ1Y≥yZe

θZ .

As in the preceding discussion we set up estimating equations Pn�̇θ,Λ = 0 and
PnBθ,Λh = 0. Here we let h range over the unit ball of the space BV[0, τ ] of
functions h: [0, τ ] → R of bounded variation (with norm the supremum of the
uniform norm and the variation norm). The expectations of these equations
are given by the maps Ψ1(θ, Λ) = P0�̇θ,Λ and Ψ2(θ, Λ)h = P0Bθ,Λh.

We can now directly verify the validity of formula (10.1). for the derivative
of the map Ψ = (Ψ1, Ψ2) The map Ψ is already linear in Λ. With G0(y|Z),
the distribution function of Y given Z, it can be written as

Ψ1(θ, Λ) = EZeθ0Z
∫
G0(y|Z) dΛ0(y)− EZeθZ

∫
Λ(y) dG0(y|Z),

Ψ2(θ, Λ)h = Eeθ0Z
∫
h(y)G0(y|Z) dΛ0(y)− EeθZ

∫ ∫

[0,y]
h dΛdG0(y|Z).
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The map Ψ : R× �∞(H) → R× �∞(H) is linear and continuous in Λ, and its
partial derivatives with respect to θ can be found by differentiation under
the expectation and are continuous in a neighbourhood of (θ0, Λ0). Several
applications of Fubini’s theorem show that indeed the derivative takes the
form (10.1).

The operator B∗
0B0, initially introduced as acting on L2(Λ), can also be

viewed as an operator of the space BV[0, τ ] into itself. It is continuously
invertible if the function y → Eθ0,Λ01Y≥yeθ0Z is bounded away from zero on
[0, τ ], which is part of our assumptions. In Lecture 3 we already computed
the efficient information and noted its positivity (under the assumption that
Z is not almost surely equal to a function of h(Y )). Thus, we can conclude
that the map Ψ̇0 is continuously invertible by Lemma 10.2.

The class H is a universal Donsker class and hence the first parts δh(y)
of the functions Bθ,Λh form a Donsker class. The functions of the form∫
[0,y] h dΛ with h ranging over H and Λ ranging over a collection of measures

of uniformly bounded variation are functions of uniformly bounded variation
and hence also belong to a Donsker class. Thus the functions Bθ,Λh form a
Donsker class by Theorem 6.10.

The other conditions of Theorem 10.1 are satisfied too. We finish our
lectures with the conclusion that the maximum likelihood estimator in the
Cox model, alias the partial likelihood estimator, is asymptotically efficient.

We are not the first to conclude this, but we still feel that this is a worthy
conclusion of the lectures, remembering that the present approach also applies
to other models.

Notes. This lecture has its roots in [39].
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10. Hájek, J. (1970): A characterization of limiting distributions of regular esti-
mates. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 14,
323–330.
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